A clinical decision model based on machine learning for ptosis

Author:

Song Xuefei,Tong Weilin,Lei Chaoyu,Huang Jingxuan,Fan Xianqun,Zhai Guangtao,Zhou HuifangORCID

Abstract

Abstract Background To establish a decision model based on two- (2D) and three-dimensional (3D) eye data of patients with ptosis for developing personalized surgery plans. Methods Data of this retrospective, case-control study was collected from March 2019 to June 2019 at the Department of Ophthalmology, Shanghai Ninth People’s Hospital, and then the patients were followed up for 3 months. One hundred fifty-two complete feature eyes from 100 voluntary patients with ptosis and satisfactory surgical results were selected, with 48 eyes excluded due to any severe condition or improper collection and shooting angle. Three experimental schemes were set as follows: use 2D distance alone, use 3D distance alone, and use two distances at the same time. The five most common evaluation indicators used in the binary classification problem to test the decision model were accuracy (ACC), precision, recall, F1-score, and area under the curve (AUC). Results For diagnostic discrimination, recall of “3D”, “2D” and “Both” schemes were 0.875, 0.875 and 0.938 respectively. And precision of the three schemes were 0.8333, 0.7778 and 1.0000 for the surgical procedure classification. Values of “Both” scheme that combined 2D and 3D data were the highest in two classifications. Conclusions In this study, 3D eye data are introduced into clinical practice to construct a decision model for ptosis surgery. Our decision model presents exceptional prediction effect, especially when 2D and 3D data employed jointly.

Funder

the National Key R&D Program of China

Interdisciplinary Program of Shanghai Jiao Tong University

the Science and Technology Commission of Shanghai

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3