Evaluation of machine learning approach for surgical results of Ahmed valve implantation in patients with glaucoma

Author:

Lee Seung Yeop,Lee Dong Yun,Ahn Jaehong

Abstract

Abstract Background Ahmed valve implantation demonstrated an increasing proportion in glaucoma surgery, but predicting the successful maintenance of target intraocular pressure remains a challenging task. This study aimed to evaluate the performance of machine learning (ML) in predicting surgical outcomes after Ahmed valve implantation and to assess potential risk factors associated with surgical failure to contribute to improving the success rate. Methods This study used preoperative data of patients who underwent Ahmed valve implantation from 2017 to 2021 at Ajou University Hospital. These datasets included demographic and ophthalmic parameters (dataset A), systemic medical records excluding psychiatric records (dataset B), and psychiatric medications (dataset C). Logistic regression, extreme gradient boosting (XGBoost), and support vector machines were first evaluated using only dataset A. The algorithm with the best performance was selected based on the area under the receiver operating characteristics curve (AUROC). Finally, three additional prediction models were developed using the best performance algorithm, incorporating combinations of multiple datasets to predict surgical outcomes at 1 year. Results Among 153 eyes of 133 patients, 131 (85.6%) and 22 (14.4%) eyes were categorized as the success and failure groups, respectively. The XGBoost was shown as the best-performance model with an AUROC value of 0.684, using only dataset A. The final three further prediction models were developed based on the combination of multiple datasets using the XGBoost model. All datasets combinations demonstrated the best performances in terms of AUROC (dataset A + B: 0.782; A + C: 0.773; A + B + C: 0.801). Furthermore, advancing age was a risk factor associated with a higher surgical failure incidence. Conclusions ML provides some predictive value in predicting the outcomes of Ahmed valve implantation at 1 year. ML evaluation revealed advancing age as a common risk factor for surgical failure.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3