The effect of acute and chronic food shortage on human population equilibrium in a subsistence setting

Author:

Tomiyama Joshua-Michael,Takagi Daisuke,Kantar Michael B.ORCID

Abstract

Abstract Background  World population is projected to reach 9–11 billion by 2050, raising concerns about food system security and sustainability. Modeling food systems are often a way to understand current and future dynamics. The most common model, first articulated by Malthus (Malthusian), shows population growth as an exponential function and food production as a linear function, concluding that human carrying capacity will be reached leading to mass starvation. Another prominent model was introduced by Boserup (Boserupian), which explains increases in food production as a function of population growth. Methodology  Here, we explore which food systems dynamics exist at equilibrium and after perturbation. The model introduced explores food availability in an isolated village and then in a line of villages. The isolated village model includes three key parameters: maximum calorie production (a), food production resilience (b), and minimum calorie requirement per person (c). The multiple village model adds an additional parameter for trade. Results  Isolated village populations are more resilient to famine than Malthusian theory predicts, suggesting that Malthus’ premise may be inaccurate. Predictably, across multiple villages increasing access and production reduce famine. However, under certain conditions large amounts of transport can lead to antagonist relationships leading to rapid changes in population. Conclusion  Food systems under both production and access scenarios proved to be resilient to small perturbations, requiring a large catastrophe to induce mortality; this appeared to discount the Malthusian model. This model can create dynamics where different modes of famine relief apply, but here we see that a balanced approach of both access and production appears to be the most resilient to famine.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Ecology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3