β-defensin 118 attenuates inflammation and injury of intestinal epithelial cells upon enterotoxigenic Escherichia coli challenge

Author:

Fu Qingqing,Lin Qian,Chen Daiwen,Yu Bing,Luo Yuheng,Zheng Ping,Mao Xiangbing,Huang Zhiqing,Yu Jie,Luo Junqiu,Yan Hui,He Jun

Abstract

Abstract Background Antimicrobial peptides including various defensins have been attracting considerable research interest worldwide, as they have potential to substitute for antibiotics. Moreover, AMPs also have immunomodulatory activity. In this study, we explored the role and its potential mechanisms of β-defensin 118 (DEFB118) in alleviating inflammation and injury of IPEC-J2 cells (porcine jejunum epithelial cell line) upon the enterotoxigenic Escherichia coli (ETEC) challenge. Results The porcine jejunum epithelial cell line (IPEC-J2) pretreated with or without DEFB118 (25 μg/mL) were challenged by ETEC (1×106 CFU) or culture medium. We showed that DEFB118 pretreatment significantly increased the cell viability (P<0.05) and decreased the expressions of inflammatory cytokines such as the interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in IPEC-J2 cells exposure to ETEC (P<0.05). Interestingly, DEFB118 pretreatment significantly elevated the abundance of the major tight-junction protein zonula occludens-1 (ZO-1), but decreased the number of apoptotic cells upon ETEC challenge (P<0.05). The expression of caspase 3, caspase 8, and caspase 9 were downregulated by DEFB118 in the IPEC-J2 cells exposure to ETEC (P<0.05). Importantly, DEFB118 suppressed two critical inflammation-associated signaling proteins, nuclear factor-kappa-B inhibitor alpha (IκB-α) and nuclear factor-kappaB (NF-κB) in the ETEC-challenged IPEC-J2 cells. Conclusions DEFB118 can alleviate ETEC-induced inflammation in IPEC-J2 cells through inhibition of the NF-κB signaling pathway, resulting in reduced secretion of inflammatory cytokines and decreased cell apoptosis. Therefore, DEFB118 can act as a novel anti-inflammatory agent.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3