Functional differentiation related to decomposing complex carbohydrates of intestinal microbes between two wild zokor species based on 16SrRNA sequences

Author:

Zou Yao,Liang Nannan,Zhang Xuxin,Han ChongxuanORCID,Nan Xiaoning

Abstract

Abstract Background The intestinal microbes in mammals play a key role in host metabolism and adaptation. As a subterranean rodent, zokor digs tunnels for foraging and mating. These digging activities of zokors increase the energy expenditure relative to their aboveground counterparts. However, relatively little is known regarding intestinal microbes of zokor and how they make full use of limited food resources underground for high energy requirements. Results Eospalax cansus and Eospalax rothschildi had distinct intestinal microbes. Although the composition of intestinal microbes is similar in two species, the proportion of bacterium are distinctly different between them. At phylum level, 11 phyla were shared between two species. Firmicutes and Bacteroidota were two dominant microbes in both of two species, while Eospalax cansus have a significantly high proportion of Firmicutes/Bacteroidota than that of Eospalax rothschildi. At genus level, norank_f_Muribaculaceae were dominant microbes in both of two zokor species. The relative abundance of 12 genera were significantly different between two species. Some bacterium including unclassified_f__Lachnospiraceae, Lachnospiraceae_NK4A136_group, Ruminococcus and Eubacterium_siraeum_group associated with cellulose degradation were significantly enriched in Eospalax cansus. Although alpha diversity was with no significant differences between Eospalax cansus and Eospalax rothschildi, the intestinal microbes between them are significant distinct in PCoA analysis. We have found that trapping location affected the alpha diversity values, while sex and body measurements had no effect on alpha diversity values. PICRUSt metagenome predictions revealed significant enrichment of microbial genes involved in carbohydrate metabolism in Eospalax cansus rather than Eospalax rothschildi. Conclusions Our results demonstrate that Eospalax cansus harbor a stronger ability of fermentation for dietary plants than Eospalax rothschildi. The stronger ability of fermentation and degradation of cellulose of intestinal microbes of Eospalax cansus may be a long-time adaptation to limited food resources underground.

Funder

the National Key Program of Research and Development

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3