Widely Targeted Lipidomics and Microbiomics Perspectives Reveal the Mechanism of Auricularia auricula Polysaccharide’s Effect of Regulating Glucolipid Metabolism in High-Fat-Diet Mice

Author:

Wu Li12345,Li Yibin12345ORCID,Chen Shouhui12,Yang Yanrong12,Tang Baosha12345,Weng Minjie12345,Shen Hengsheng12,Chen Junchen12345,Lai Pufu12345

Affiliation:

1. Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China

2. National R & D Center of Edible Fungi Processing, Fuzhou 350003, China

3. Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China

4. Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China

5. Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China

Abstract

The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, dietary AP supplementation reduced body weight by 13.44%, liver index by 21.30%, epididymal fat index by 50.68%, fasting blood glucose (FBG) by 14.27%, serum total cholesterol (TC) by 20.30%, serum total triglycerides (TGs) by 23.81%, liver non-esterified fatty acid (NEFA) by 20.83%, liver TGs by 20.00%, and liver malondialdehyde (MDA) by 21.05%, and increased liver glutathione oxidase (GSH-PX) activity by 52.24%, total fecal bile acid (TBA) by 46.21%, and fecal TG by 27.16%, which significantly regulated glucose and lipid metabolism. Microbiome analysis showed that AP significantly downregulated the abundance of the Desulfobacterota phylum, as well as the genii Desulfovibrio, Bilophila, and Oscillbacter in the cecum of hyperlipidemic mice, which are positively correlated with high lipid indexes, while it upregulated the abundance of the families Eubacterium_coprostanoligenes_group and Ruminococcaceae, as well as the genii Eubacterum_xylanophilum_group, Lachnospiraceae_NK4A136_group, Eubacterium_siraeum_group, and Parasutterella, which were negatively correlated with high lipid indexes. In addition, AP promoted the formation of SCFAs by 119.38%. Widely targeted lipidomics analysis showed that AP intervention regulated 44 biomarkers in metabolic pathways such as sphingolipid metabolism and the AGE-RAGE signaling pathway in the hyperlipidemic mice (of which 15 metabolites such as unsaturated fatty acids, phosphatidylserine, and phosphatidylethanolamine were upregulated, and 29 metabolites such as phosphatidylcholine, ceramide, carnitine, and phosphatidylinositol were downregulated), thereby correcting glucose and lipid metabolism disorders.

Funder

Fujian Provincial Department of Science and Technology

Fujian Academy of Agricultural Sciences

Fujian Provincial People’s Government—Chinese Academy of Agricultural Sciences Agricultural High-quality Development Surpasses

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3