Evaluation in broilers of aerosolized nanoparticles vaccine encapsulating imuno-stimulant and antigens of avian influenza virus/Mycoplasma gallisepticum

Author:

Kumosani TahaORCID,Yaghmoor Soonham,Abdulaal Wesam H.,Barbour Elie

Abstract

Abstract Background The global prevalence of economic primary infection of poultry by H9N2 virus, including the Lineage A, panzootic group ME1, and associated with secondary infection by Mycoplasma gallisepticum (MG), is alarming to the sustainability of the poultry sector. This research evaluated in broilers the immunity and protection induced by aerosolization of liposomal nanoparticles vaccine, encapsulating antigens of H9N2 virus and MG, with or without the incorporation of Echinacea extract (EE) immuno-stimulant. Six different treatments (TRTs) of broilers were included in the experimental design, with three replicate pens/TRT and stocking of 20 day-old birds/replicate. Results The tracheobronchial washings of birds subjected to aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE had the highest significant mean levels of each of IgA and IgG specific to H9N2 and MG, associated with lowest tracheal MG colonization, tracheal H9N2 recovery, tracheal histopathologic lesions, mortality, and best performance in body weight and feed conversion compared to all other challenged birds allocated to different treatments (P < 0.05). However, the control broilers, free from challenge with MG and H9N2, had the lowest mortality and tracheal lesions, and the highest production performance. Conclusion The aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE resulted in enough local immunity for protection of broilers against infection, and in attaining the highest production performance in challenged birds. The potential implication of vaccinating with safe killed nanoparticle vaccines is of utmost importance to the global poultry sector.

Funder

Research and Development Office (RDO) at the Ministry of Education, Kingdom of Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contribution of nanotechnology to greater efficiency in animal nutrition and production;Journal of Animal Physiology and Animal Nutrition;2024-05-20

2. Advances in understanding bat infection dynamics across biological scales;Proceedings of the Royal Society B: Biological Sciences;2024-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3