Mathematical analysis of fractional-order Caputo’s derivative of coronavirus disease model via Laplace Adomian decomposition method

Author:

Yunus Akeem O.ORCID,Olayiwola Morufu O.,Adedokun Kamilu A.,Adedeji Joseph. A.,Alaje Ismaila A.

Abstract

Abstract Background The world's survival ability has been threatened by the COVID-19 outbreak. The possibility of the virus reemerging in the future should not be disregarded, even if it has been confined to certain areas of the world after wreaking such havoc. This is because it is impossible to prove that the virus has been totally eliminated. This research attempts to investigate the spread and control of the COVID-19 virus in Nigeria using the Caputo fractional order derivative in a proposed model. Results We proposed a competent nine-compartment model of Corona virus infection. It starts by demonstrating that the model is epidemiologically sound in terms of solution existence and uniqueness. The basic reproduction threshold R0 was determined using the next-generation matrix technique. We applied the Laplace-Adomian decomposition method to the fractional-order Caputo's derivative model of the Corona virus disease to produce the approximate solution of the model analytically. The obtained results, in the form of an infinite series, were simulated using the MAPLE 18 package to investigate the effect of fractional order derivative on the dynamics of COVID-19 transmission in the model and shed light on methods of eradication. The graphical interpretations of the simulation process were shown and discussed accordingly. Conclusions The study reveals the effect of the Caputo fractional order derivative in the transmission dynamics of the disease. Individual recovery was found to be greatest at an integer order, which represents the full implementation of other factors such as treatment, vaccination, and disease transmission reduction. Hence, we advised that researchers, government officials, and health care workers make use of the findings of this study to provide ways in which disease transmission will be reduced to a minimum to stop the prevalence of COVID-19 by applying the findings of this study.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3