Flip bifurcation analysis and mathematical modeling of cholera disease by taking control measures

Author:

Ahmad Aqeel,Abbas Fakher,Farman Muhammad,Hincal Evren,Ghaffar Abdul,Akgül Ali,Hassani Murad Khan

Abstract

AbstractTo study the dynamical system, it is necessary to formulate the mathematical model to understand the dynamics of various diseases which are spread in the world wide. The objective of the research study is to assess the early diagnosis and treatment of cholera virus by implementing remedial methods with and without the use of drugs. A mathematical model is built with the hypothesis of strengthening the immune system, and a ABC operator is employed to turn the model into a fractional-order model. A newly developed system SEIBR, which is examined both qualitatively and quantitatively to determine its stable position as well as the verification of flip bifurcation has been made for developed system. The local stability of this model has been explored concerning limited observations, a fundamental aspect of epidemic models. We have derived the reproductive number using next generation method, denoted as “$$R_{0}$$ R 0 ”, to analyze its impact rate across various sub-compartments, which serves as a critical determinant of its community-wide transmission rate. The sensitivity analysis has been verified according to its each parameters to identify that how much rate of change of parameters are sensitive. Atangana–Toufik scheme is employed to find the solution for the developed system using different fractional values which is advanced tool for reliable bounded solution. Also the error analysis has been made for developed scheme. Simulations have been made to see the real behavior and effects of cholera disease with early detection and treatment by implementing remedial methods without the use of drugs in the community. Also identify the real situation the spread of cholera disease after implementing remedial methods with and without the use of drugs. Such type of investigation will be useful to investigate the spread of virus as well as helpful in developing control strategies from our justified outcomes.

Publisher

Springer Science and Business Media LLC

Reference63 articles.

1. Stakhov, A. The Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science Vol. 22 (World Scientific, 2009).

2. Kuhtz-Buschbeck, J. P. et al. Rediscovery of Otto Frank’s contribution to science. J. Mol. Cell. Cardiol. 119, 96–103 (2018).

3. Ahmad, A. et al. Modeling of Smoking Transmission Dynamics using Caputo-Fabrizio Type Fractional Derivative, Computational and Analytic Methods in Biological Sciences: Bioinformatics with Machine Learning and Mathematical Modelling 1–20 (River Publishers, 2023).

4. Farman, M. et al. Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian Decomposition Method. Ain Shams Eng. J. 9(4), 3391–3397 (2018).

5. Von Glasersfeld, E. Learning as a constructive activity. In Problems of Representation in the Teaching and Learning of Mathematics, 3–17 (1987).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3