Abstract
Abstract
Background
The present study presents a 3-D numerical simulation of a direct injection diesel engine powered by base diesel oil and soybean biodiesel fuel at different load conditions. The modeling was performed using commercial computational fluid dynamics (CFD) software linked to a chemical solver. A chemical kinetic reaction mechanism was developed to simulate the combustion and fuel spray processes. Base diesel oil results were verified using a single-cylinder, 4-stroke diesel engine.
Results
The study showed that the usage of the soybean biodiesel fuel caused a reduction in carbon monoxide (CO) and hydrocarbon (HC) emissions by about 42.38% and 41.35%, compared with base diesel and an increase in nitrogen oxides (NOx) and carbon dioxide (CO2) emissions of about 21.8% and 11.2%, respectively. Exhaust gas temperature (EGT) is reduced by an average value of 9.4%, the brake-specific fuel consumption (BSFC) is increased by an average value of 11.8% and the brake thermal efficiency (BTE) is dropped by an average value of 11.3% for soybean biodiesel fuel.
Conclusions
The CFD model showed the effect of the unsaturated fatty acid methyl esters present in soybean biodiesel on the spatial distributed values of NOx, oxygen and temperature during the combustion in engine cylinder. It was observed that the combustion of soybean biodiesel began about 3.89 CAD earlier than base diesel, and the in-cylinder peak pressure was dropped by 8.25%. Soybean biodiesel fuel was optimized by performing four starts of injection (SOI) at timings of − 18, − 16, − 15 and − 13,5 bTDC, and it was found that the combustion characteristics of soybean biodiesel are optimum at SOI = − 15 bTDC. These results indicate that the biodiesel fuel can be used as an alternative and environmentally friendly fuel in the engine without any modifications.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献