Affiliation:
1. Sustainable Energy Technology Laboratory, Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, India
2. Department of Mechanical Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, India
Abstract
Various types of alternative fuels and their additives have undergone extensive investigation to analyze their effects on diesel engine performance. The aim of this study is to comprehensively evaluate the effects on performance and sustainability while employing blends of palm oil biodiesel and diesel, together with the introduction of oxyhydrogen (HHO) gas, in a diesel engine. The objectives include evaluating energy, exergy and sustainability parameters in order to ascertain the effectiveness of certain fuel mixtures. The study examined five different fuel mixtures: PB0, PB10, PB20, PB10HHO and PB20HHO. The HHO gas was injected into the cylinder alongside the air at a flow rate of 0.3 LPM. The primary results indicate significant enhancements in energy and exergy efficiency when HHO gas is used in conjunction with palm oil biodiesel, resulting in gains of up to 1.52% and 1.43%, respectively, compared to using biodiesel blends alone. In addition, the introduction of HHO gas resulted in a drop of up to 4.58% in brake-specific fuel consumption (BSFC). The use of biodiesel blends in conjunction with HHO gas led to a noteworthy decrease of up to 11.4% in carbon dioxide (CO2) and 5.7% in hydrocarbon (HC) emissions. Nevertheless, there was a notable rise of up to 9.56% in nitric oxide (NO) emissions. With the HHO-supplied condition, the combination was shown to have up to a 2.05% better sustainability index. The PB10HHO and PB20HHO blends provide improved performance when compared to pure biodiesel blends and conventional diesel. This study offers a unique approach to increasing diesel engine performance through the synergistic usage of biodiesel blends and HHO gas.
Funder
Science and Engineering Research Board (SERB), Anusandhan National Research Foundation (ANRF), Government of India
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献