Anticancer cytotoxicity and antifungal abilities of green-synthesized cobalt hydroxide (Co(OH)2) nanoparticles using Lantana camara L.

Author:

Ravi LokeshORCID,Sreenivas B. K. Anirudh,Kumari G. R. Shree,Archana O.

Abstract

Abstract Background Green synthesis of metal nanoparticles with pharmaceutical applications is the current focus in the field of nanomedicine. This study aims at use of Lantanacamara L as a source of green reducing agent toward synthesis of cobalt nanoparticles. Results Fe3+-reducing assay demonstrated that Lantana camara methanol extract (LCM) has significant electron transfer potential. Gas chromatography mass spectroscopy (GC–MS) analysis of the crude extracts revealed the presence of 7 known and 17 unknown phytochemicals in LCM. Synthesis of cobalt nanoparticles was confirmed based on color change of reaction mixture from light brown to dark brown. UV–visible spectrometry analysis showed that the synthesized particles had a λmax at 267.5 nm. Based on the two theta (2θ) and Miller indices (hkl) values obtained in XRD analysis, the particles were confirmed to be cobalt hydroxide (Co(OH)2) nanoparticles. Further dynamic light scattering (DLS) analysis showed that the average size of the Co(OH)2 nanoparticles is 180 nm. SEM image analysis of the particles revealed that they are spherical mass of feather-like structure, contributing toward increased surface area of the particles. Further, the pharmaceutical potential of the Co(OH)2 nanoparticles was evaluated against eukaryotic cancer and fungal cells. MTT cytotoxicity analysis showed that Co(OH)2 nanoparticles have selective toxicity toward HCT-116 cancer cells with an IC50 value of 25 µg/ml and reduced cytotoxicity to non-cancerous VERO cells with an IC50 value of 200 µg/ml suggesting that the particles possess selective anti-cancerous cytotoxicity. Additionally, the particles demonstrated significant antifungal activity against 5 human fungal pathogens. Conclusions Results of this study conclude that green-synthesized Co(OH)2 nanoparticles using Lantanacamara L possess excellent eukaryotic cytotoxicity against cancer cells and fungal pathogens.

Funder

St. Joseph's University, Bengaluru

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3