Abstract
Abstract
Background
Laser corneal reshaping is a successful treatment of many refraction disorders. However, some physical demonstrations for the laser interaction with cornea are not fully explained. In the current paper, we present a modified model to precisely investigate the ablation threshold, the ablation rate and the physical/chemical mechanisms in that action.
Results
The model discusses the possible photochemical reaction between the incident photons and various components of the cornea. Such photochemical reaction may end by photo-ablation or just molecular electronic excitation. The ablation threshold is also produced by other chemical reaction. Finally another chemical reaction creates out-site fragments. Moreover, the effect of applying different laser wavelengths, namely the common excimer-laser (193-nm), and the solid-state lasers (213-nm & 266-nm) has been investigated.
Conclusion
Despite the success and ubiquity of the Argon Fluoride “ArF” laser, our results reveal that a carefully designed 213-nm laser gives the same outcomes with the potential of possible lower operational drawbacks related with heat generation and diffusion.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献