Abstract
Abstract
Background
The long-term effects of diabetes mellitus (DM) can impair several organs, including the kidney, resulting in serious health problems. Diabetic nephropathy (DN), a primary contributor in end-stage renal failure worldwide, affects 20–30% of patients with type 2 DM (T2DM). This study was designed to assess the contribution of nuclear factor kappa B (NF-κB) and interleukin (IL)-6, IL-19, IL-34, and IL-37 in the development of DN.
Methods
The study included 160 participants, of which 130 were allocated into the patients with diabetes group, patients with chronic kidney disease (CKD), and patients with diabetic chronic kidney disease (DCKD), and 30 were healthy controls.
Results
The obtained data revealed a significant (p < 0.05) increase in IL-19, IL-34, and NF-κB mRNA expression and serum IL-6 levels in patient groups (CKD and DCKD) compared with the healthy control group, whereas IL-19, IL-34, and NF-κB mRNA expression showed a marked elevation in the DCKD group when compared with patients with CKD. Conversely, IL-37 mRNA expression and serum superoxide dismutase (SOD) activity were significantly (p < 0.05) decreased in both groups relative to the healthy controls, whereas the decrease was markedly higher in the DCKD group when compared with the CKD group.
Conclusion
The obtained results could indicate the potential implication of NF-κB, IL-19, IL-34, and IL-6 levels, along with the decrease in IL-37 expression and serum SOD activity, in the pathophysiology of kidney disease in diabetes. Moreover, designing drugs targeting these cytokines and/or their signal pathways may prevent or alleviate the progression of kidney disease.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Reference48 articles.
1. Abdel Aziz SM, Ahmed OM, Abd El-Twab SM, Al-Muzafar HM, Amin KA, Abdel-Gabbar M (2020) Antihyperglycemic effects and mode of actions of musa paradisiaca leaf and fruit peel hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2020(2020):9276343
2. Mahmoud B, Abdel-Moneim A, Negeem Z, Nabil A (2022) The relationship between B-cell lymphoma 2, interleukin-1β, interleukin-17, and interleukin-33 and the development of diabetic nephropathy. Mol Biol Rep 49(5):3803–3809
3. Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(1):3–15
4. Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C, Navarro-González JF (2019) Inflammation in diabetic kidney disease. Nephron 143(1):12–16
5. Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S (2021) NF-κB and its regulators during pregnancy. Front Immunol 12:679106