Abstract
Abstract
Background
Nanotechnology is a promising technology in many fields including agriculture. So, this investigation aimed to study effect of curcumin (CUR) with polyvinyl alcohol (PVA) nano-compositeat 0, 20, 40 and 60 mg L−1 on physiochemical attributes of sunflower plants grown under salinity stress (3000 ppm).
Results
Results showed that salinity stress significantly reduced all growth indiceslike plant height, number of leaves/plant, fresh and dry weight of shoot and leaf area accompanied by significant increases in proline content, secondary metabolites (total phenolic compound contents and flavonoids), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, catalase, peroxidase, superoxide dismutase, and glutathione reductase increased significantly. The decreases in chlorophyll a, chlorophyll b and carotenoids due to salinity stress were non-significant. On the other hand, curcumin with polyvinyl alcohol (CUR-PVA) nano-composite at all concentrations significantly promoted all vegetative growth parameters, total photosynthetic pigments, secondary metabolites, antioxidant enzyme activities accompanied by significant decreases in proline content, MDA and H2O2 either in plant irrigated with tap water or saline solution relative to corresponding control. CUR-PVA nano-composite at 20 mg L−1 was the most optimum treatment either in plant irrigated with tape water or saline solution since it caused the highest significant increases in vegetative growth parameters, total photosynthetic pigments, secondary metabolites and antioxidant enzyme activities accompanied by highest significant decreases in proline content, MDA and H2O2 relative to control.
Conclusions
In brief that CUR-PVA nano-composite employs no ticeable effect in decreasing the deleterious effect of salinity on quality of sunflower.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Reference106 articles.
1. Rehman AU, Safeer M, Qamar R, Altaf MM, Sarwar N, Farooq O, Iqbal MM, Ahmad S (2019) Exogenous applicatıon of salicylic acid ameliorates growth and yield of sunflower (Helianthus annuus L.) in saline soil. Agrosciencia. 53:207–217
2. Abd El-Hameid AR, Sadak MS (2020) Impact of glutathione on enhancing sunflower growth and biochemical aspects and yield to alleviate salinity stress. Biocatal Agric Biotechnol 29(2020):101744
3. Razzaq A, Ali A, Safdar LB, Zafar MM, Rui Y, Shakeed A, Shaukat A, Ashraf M, Gong W, Yuan Y (2020) Salt stress induces physiochemical alterations in rice grain composition and quality. J Food Sci 85:14–20
4. Cai ZQ, Gao Q (2020) Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting high land quinoa cultivars. BMC Plant Biol 20(70):1–15
5. Yu Z, Duran X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25:1117–1130
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献