An assessment of ensemble learning approaches and single-based machine learning algorithms for the characterization of undersaturated oil viscosity

Author:

Akano Theddeus T.ORCID,James Chinemerem C.

Abstract

Abstract Background Prediction of accurate crude oil viscosity when pressure volume temperature (PVT) experimental results are not readily available has been a major challenge to the petroleum industry. This is due to the substantial impact an inaccurate prediction will have on production planning, reservoir management, enhanced oil recovery processes and choice of design facilities such as tubing, pipeline and pump sizes. In a bid to attain improved accuracy in predictions, recent research has focused on applying various machine learning algorithms and intelligent mechanisms. In this work, an extensive comparative analysis between single-based machine learning techniques such as artificial neural network, support vector machine, decision tree and linear regression, and ensemble learning techniques such as bagging, boosting and voting was performed. The prediction performance of the models was assessed by using five evaluation measures, namely mean absolute error, relative squared error, mean squared error, root mean squared error and root mean squared log error. Results The ensemble methods offered generally higher prediction accuracies than single-based machine learning techniques. In addition, weak single-based learners of the dataset used in this study (for example, SVM) were transformed into strong ensemble learners with better prediction performance when used as based learners in the ensemble method, while other strong single-based learners were discovered to have had significantly improved prediction performance. Conclusion The ensemble methods have great prospects of enhancing the overall predictive accuracy of single-based learners in the domain of reservoir fluid PVT properties (such as undersaturated oil viscosity) prediction.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3