A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc

Author:

Shinagawa H.,Oyama S.

Abstract

Abstract The observations made by Fabry-Perot interferometers (FPIs), radars, and satellites have indicated that large vertical motion in the polar region is occasionally generated in the thermosphere associated with auroral activities. However, the behavior of the vertical wind is often very complicated, and the cause of the vertical wind has not been explained by auroral heating or by ion-neutral drag alone. It has been pointed out that a background horizontal flow is likely to significantly alter the dynamics of the neutral atmosphere near an auroral arc. Recent observations have also suggested that strong downward motion is generated in the vicinity of an auroral arc. To study the thermospheric dynamics near a local heating region embedded in a large-scale horizontal flow, a two-dimensional numerical simulation of the thermospheric dynamics has been performed. It is found that interaction of local heating and strong horizontal flow could play an important role in generating vertical motion near an auroral arc. The simulation results indicate that for a horizontal wind speed larger than about 300 m/s, a steady wave-like structure of the neutral wind is formed within and downstream of the heated region. For a horizontal wind speed less than about 300 m/s, on the other hand, no significant vertical motion is generated outside the heated region. This process might account for at least some of the observed features of vertical motion within and outside an auroral arc.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3