Statistical analysis for EUV dynamic spectra and their impact on the ionosphere during solar flares

Author:

Nishimoto Shohei1,Watanabe Kyoko1ORCID,Jin Hidekatsu2,Kawai Toshiki3,Imada Shinsuke4,Kawate Tomoko5,Otsuka Yuichi3,Shinbori Atsuki3,Tsugawa Takuya2,Nishioka Michi2

Affiliation:

1. National Defense Academy: Boei Daigakko

2. National Institute of Information and Communications

3. Nagoya University: Nagoya Daigaku

4. University of Tokyo: Tokyo Daigaku

5. National Institute for Fusion Science: Kaku Yugo Kagaku Kenkyujo

Abstract

Abstract The X-rays and extreme ultraviolet (EUV) emitted during solar flares can rapidly change the physical composition of Earth's ionosphere, causing space weather phenomena. It is important to develop an accurate understanding of solar flare emission spectra to understand how it affects the ionosphere. We reproduced the entire solar flare emission spectrum using an empirical model and physics-based model, and input it into the earth’s atmospheric model, GAIA to calculate the total electron content (TEC) enhancement due to solar flare emission. We compared the statistics of nine solar flare events and calculated the TEC enhancements with the corresponding observed data. The model used in this study was able to estimate the TEC enhancement due to solar flare emission with a correlation coefficient greater than 0.9. The results of this study indicate that the TEC enhancement due to solar flare emission is determined by soft X-ray and EUV emission with wavelengths below 35 nm. The TEC enhancement is found to be largely due to the change in the soft X-ray emission and EUV line emissions with wavelengths such as Fe XVII 10.08 nm, Fe XIX 10.85 nm and He II 30.38 nm.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3