The evaluation of an artificial intelligence system for estrus detection in sows

Author:

Verhoeven Steven,Chantziaras Ilias,Bernaerdt Elise,Loicq Michel,Verhoeven Ludo,Maes Dominiek

Abstract

Abstract Background Good estrus detection in sows is essential to predict the best moment of insemination. Nowadays, a technological innovation is available that detects the estrus of the sow via connected sensors and cameras. The collected data are subsequently analyzed by an artificial intelligence (AI) system. This study investigated whether such an AI system could support the farmer in optimizing the moment of insemination and reproductive performance. M&M Three Belgian sow farms (A, B and C) where the AI system was installed, participated in the study. The reproductive cycles (n = 6717) of 1.5 years before and 1.5 years after implementation of the system were included. Parameters included: (1) farrowing rate (FR), (2) percentage of repeat-breeders (RB), (3) farrowing rate after first insemination (FRFI) and (4) number of total born piglets per litter (NTBP). Also, data collected by the system were analyzed to describe the weaning-to-estrus interval (WEI), estrus duration (ED) and the number of inseminations used per estrus. This dataset included 2261 cycles, collected on farms B and C. Results In farm A, all parameters significantly improved namely FR + 4.3%, RB − 3.75%, FRFI + 6.2% and NTBP + 1.06 piglets. In farm B, the NTBP significantly decreased with 0.48 piglets, but in this farm the insemination dose was too low (0.8 × 109 spermatozoa per dose). In farm C, only the NTBP significantly increased with 0.45 piglets after the implementation of the system. The WEI as determined by the system varied between 78 and 90 h, being 10–20 h shorter in comparison with the WEI as determined by the farmer. The ED, determined by the system ranged from 48 to 60 h, and was less variable as compared to the ED as assessed by the farmer. The mean number of inseminations per estrus remained similar over time in farm B whereas it decreased over time from approximately 1.6–1.2 in farm C. Conclusion The AI system can help farmers to improve the reproductive performance, assess estrus characteristics and reduce the number of inseminations per estrus. Results may vary between farms as many other variables such as farm management, genetics and insemination dose also influence reproductive performance.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Small Animals

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3