Technological Tools and Artificial Intelligence in Estrus Detection of Sows—A Comprehensive Review

Author:

Sharifuzzaman Md12ORCID,Mun Hong-Seok13ORCID,Ampode Keiven Mark B.14ORCID,Lagua Eddiemar B.15ORCID,Park Hae-Rang15,Kim Young-Hwa6,Hasan Md Kamrul17ORCID,Yang Chul-Ju15ORCID

Affiliation:

1. Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea

2. Department of Animal Science and Veterinary Medicine, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh

3. Department of Multimedia Engineering, Sunchon National University, Suncheon 57922, Republic of Korea

4. Department of Animal Science, College of Agriculture, Sultan Kudarat State University, Tacurong 9800, Philippines

5. Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea

6. Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Chonnam National University, Gwangju 61186, Republic of Korea

7. Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh

Abstract

In animal farming, timely estrus detection and prediction of the best moment for insemination is crucial. Traditional sow estrus detection depends on the expertise of a farm attendant which can be inconsistent, time-consuming, and labor-intensive. Attempts and trials in developing and implementing technological tools to detect estrus have been explored by researchers. The objective of this review is to assess the automatic methods of estrus recognition in operation for sows and point out their strong and weak points to assist in developing new and improved detection systems. Real-time methods using body and vulvar temperature, posture recognition, and activity measurements show higher precision. Incorporating artificial intelligence with multiple estrus-related parameters is expected to enhance accuracy. Further development of new systems relies mostly upon the improved algorithm and accurate data provided. Future systems should be designed to minimize the misclassification rate, so better detection is achieved.

Publisher

MDPI AG

Reference157 articles.

1. Godfray, H.C.J., and Garnett, T. (2014). Food Security and Sustainable Intensification. Philos. Trans. R. Soc. B Biol. Sci., 369.

2. FAO (2023). Meat Market Review: Emerging Trends and Outlook, 2023, FAO. Meat Market Review.

3. Precision Livestock Farming (PLF);Berckmans;Comput. Electron. Agric.,2008

4. Automated Cattle Counting Using Mask R-CNN in Quadcopter Vision System;Xu;Comput. Electron. Agric.,2020

5. General Introduction to Precision Livestock Farming;Berckmans;Anim. Front.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence and porcine breeding;Animal Reproduction Science;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3