Excessive BCAA regulates fat metabolism partially through the modification of m6A RNA methylation in weanling piglets

Author:

Heng Jinghui,Wu Zhihui,Tian Min,Chen Jiaming,Song Hanqing,Chen Fang,Guan Wutai,Zhang Shihai

Abstract

Abstract Background Fat percentage and distribution in pigs are associated with their productive efficiency and meat quality. Dietary branched-chain amino acids (BCAA) regulate fat metabolism in weanling piglets with unknown mechanism. It is reported that N6-methyl-adenosine (m6A) is involved in fat metabolism in mice. The current study was designed to investigate the relationship between dietary branched-chain amino acids and fat metabolism through N6-methyl-adenosine (m6A) in weanling piglets. Methods A total of 18 healthy crossbred weaned piglets (Duroc × Landrace × Large White, 10.45 ± 0.41 kg) were divided into 3 treatments and were fed the low BCAA dose diet (L-BCAA), the normal dose BCAA diet (N-BCAA), or the high dose BCAA (H-BCAA) diet for 3 weeks. Results Our results show that compared with the N-BCAA group, the L-BCAA group had higher concentration of serum leptin (P < 0.05), while the H-BCAA group had lower concentration of serum adiponectin (P < 0.05). Fatty acid synthesis in pigs from the H-BCAA group was lower than those from the N-BCAA group with the down-regulation of lipogenic genes (ACACA, FASN, PPAR-r, SREBP-1c in ventral and dorsal fat, SREBP-1c in liver) and up-regulation of lipolysis genes (HSL, ATGL, CPT-1A, FABP4 in ventral fat, HSL in liver) (P < 0.05). Similarly, fatty acid synthesis in pigs from the L-BCAA group was also lower than those from the N-BCAA group with the decrease of lipogenic genes (ACACA in ventral, ACACA and FASN in dorsal fat, ACACA, FASN, SREBP-1c in liver) and the increase of lipolysis genes (ATGL, CPT-1A CD36, FABP4 in ventral fat and HSL, ATGL, CPT-1A in dorsal fat, CPT-1A) (P < 0.05). Feeding H-BCAA diet significantly reduced total m6A levels in ventral and dorsal fat and liver tissues (P < 0.05). The decrease of total m6A is associated with down-regulation of METTL3, METTL14 and FTO in dorsal fat and METTL3 and FTO in liver (P < 0.05). Decreased m6A modification of ACACA and FASN in ventral and dorsal adipose tissues was observed in pig fed with excessive BCAA. Conclusion These results suggest that insufficient or excessive BCAA decreased the fat deposition by increasing lipolysis and deceasing lipogenesis in adipose and liver tissues. Dietary excessive BCAA might regulate the process of lipid metabolism partly through the m6A RNA methylation.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3