Author:
Li Jinchen,Huang Hongying,Fan Rong,Hua Yinan,Ma Weiwei
Abstract
Abstract
Background
Dietary fat intake affects brain composition and function. Different types of dietary fatty acids alter species and abundance of brain lipids in mice. The aim of this study is to explore whether the changes are effective through gut microbiota.
Methods
In our study, 8-week-old male C57BL/6 mice were randomly divided into 7 groups and fed with high-fat diet (HFD) with different fatty acid compositions, control (CON) group, long-chain saturated fatty acid (LCSFA) group, medium-chain saturated fatty acid (MCSFA) group, n-3 polyunsaturated fatty acid (n-3 PUFA) group, n-6 polyunsaturated fatty acid (n-6 PUFA) group, monounsaturated fatty acid (MUFA) group and trans fatty acid (TFA) group. Then, the fecal microbiota transplant (FMT) was performed in other pseudo germ-free mice after antibiotic treatment. The experimental groups were orally perfused with gut microbiota that induced by HFD with different types of dietary fatty acids. The mice were fed with regular fodder before and after FMT. High-performance liquid chromatography-mass spectrometry (LC-MS) was used to analysis the composition of fatty acids in the brain of HFD-fed mice and hippocampus of mice treated with FMT which was collected from HFD-fed mice.
Results
The content of acyl-carnitines (AcCa) increased and lysophosphatidylgylcerol (LPG) decreased in all kinds of HFD groups. phosphatidic acids (PA), phosphatidylethanolamine (PE) and sphingomyelin (SM) contents were significantly increased in the n-6 PUFA-fed HFD group. The HFD elevated the saturation of brain fatty acyl (FA). Lysophosphatidylcholine (LPC), lysodi-methylphosphatidylethanolamine (LdMePE), monolysocardiolipin (MLCL), dihexosylceramides (Hex2Cer), and wax ester (WE) significantly increased after LCSFA-fed FMT. MLCL reduced and cardiolipin (CL) raised significantly after n-3 PUFA-fed FMT.
Conclusions
The study revealed, HFD and FMT in mice had certain effects on the content and composition of fatty acids in the brain, especially on glycerol phospholipid (GP). The change of AcCa content in FA was a good indicator of dietary fatty acid intake. By altering the fecal microbiota, dietary fatty acids might affect brain lipids.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献