Metabolomic signatures for liver tissue and cecum contents in high-fat diet-induced obese mice based on UHPLC-Q-TOF/MS

Author:

Cai Hongying,Wen Zhiguo,Meng Kun,Yang PeilongORCID

Abstract

Abstract Background The incidence of obesity is increasing worldwide, and it is a risk factor for diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Our previous study had demonstrated that high-fat diet induced increased weight gain, fat weight, serum cholesterol, triglyceride, and ATL levels in liver, and influenced the diversity and composition of cecal microbiota in mice. Hence, this study aimed to investigate the roles of the gut microbially derived metabolites and liver metabolites between the obese and lean mice, focusing on their association with the progression of obesity induced by high-fat diet (HFD). Methods An obesity model in mice was established with HFD for 16 weeks. Cecal contents and liver tissues metabolomics based on ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry and orthogonal partial least squares discriminant analyses (OPLS-DA) was performed to identify the alterations in metabolites associated with obese mice. Results Obese and lean groups were clearly discriminated from each other on OPLS-DA score plot and major metabolites contributing to the discrimination were mainly involved in glycerophospholipid metabolism, primary bile acid biosynthesis, and biosynthesis of unsaturated fatty acids pathways. HFD-induced alterations of 19 metabolites in liver and 43 metabolites in cecum contents were identified as potential biomarkers related to obesity. Specifically, chenodeoxycholic acid, taurochenodeoxycholate, and tauroursodeoxycholic acid in liver were elevated 35.94, 24.36, and 18.71-fold, respectively. PI(P-16:0/18:1(9Z)), PG(19:0/16:0), PS(P-16:0/20:2(11Z,14Z)), PI(22:1(11Z)/12:0), and PE(21:0/0:0) in cecum were enhanced 884, 640.96, 226.63, 210.10, 45.13-fold in comparison with the lean mice. These metabolites were the most important biomarkers for discriminating between the obese and lean mice. In addition, cecum contents metabolites were strongly correlated with hepatic metabolites through gut-liver axis analysis. Conclusions HFD increased lipid profiles (i.e. glycerophospholipids, PC, PE, PI, PG, and PS) and total bile acid (primary and secondary bile acid) in liver and cecum, suggesting that they may play an important role in the progression of obesity. These metabolites can be used to better understand obesity and related disease induced by HFD. Furthermore, the level alterations of these metabolites can be used to assess the risk of obesity and the therapeutic effect of obesity management.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3