Abstract
AbstractImmortalized cell lines have long been used as model systems to systematically investigate biological processes under controlled and reproducible conditions, providing insights that have greatly advanced cellular biology and medical sciences. Recently, the widely used monocytic leukemia cell line, THP-1, was comprehensively examined to understand mechanistic relationships between the 3D chromatin structure and transcription during the trans-differentiation of monocytes to macrophages. To corroborate these observations in primary cells, we analyze in situ Hi-C and RNA-seq data of human primary monocytes and their differentiated macrophages in comparison to that obtained from the monocytic/macrophagic THP-1 cells. Surprisingly, we find significant differences between the primary cells and the THP-1 cells at all levels of chromatin structure, from loops to topologically associated domains to compartments. Importantly, the compartment-level differences correlate significantly with transcription: those genes that are in A-compartments in the primary cells but are in B-compartments in the THP-1 cells exhibit a higher level of expression in the primary cells than in the THP-1 cells, and vice versa. Overall, the genes in these different compartments are enriched for a wide range of pathways, and, at least in the case of the monocytic cells, their altered expression in certain pathways in the THP-1 cells argues for a less immune cell-like phenotype, suggesting that immortalization or prolonged culturing of THP-1 caused a divergence of these cells from their primary counterparts. It is thus essential to reexamine phenotypic details observed in cell lines with their primary counterparts so as to ensure a proper understanding of functional cell states in vivo.
Funder
Key Technology Research and Development Program of Shandong
School of Medicine, Shanghai Jiao Tong University
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献