Bayesian statistics in the design and analysis of cluster randomised controlled trials and their reporting quality: a methodological systematic review

Author:

Jones Benjamin G.ORCID,Streeter Adam J.,Baker Amy,Moyeed Rana,Creanor Siobhan

Abstract

Abstract Background In a cluster randomised controlled trial (CRCT), randomisation units are “clusters” such as schools or GP practices. This has methodological implications for study design and statistical analysis, since clustering often leads to correlation between observations which, if not accounted for, can lead to spurious conclusions of efficacy/effectiveness. Bayesian methodology offers a flexible, intuitive framework to deal with such issues, but its use within CRCT design and analysis appears limited. This review aims to explore and quantify the use of Bayesian methodology in the design and analysis of CRCTs, and appraise the quality of reporting against CONSORT guidelines. Methods We sought to identify all reported/published CRCTs that incorporated Bayesian methodology and papers reporting development of new Bayesian methodology in this context, without restriction on publication date or location. We searched Medline and Embase and the Cochrane Central Register of Controlled Trials (CENTRAL). Reporting quality metrics according to the CONSORT extension for CRCTs were collected, as well as demographic data, type and nature of Bayesian methodology used, journal endorsement of CONSORT guidelines, and statistician involvement. Results Twenty-seven publications were included, six from an additional hand search. Eleven (40.7%) were reports of CRCT results: seven (25.9%) were primary results papers and four (14.8%) reported secondary results. Thirteen papers (48.1%) reported Bayesian methodological developments, the remaining three (11.1%) compared different methods. Four (57.1%) of the primary results papers described the method of sample size calculation; none clearly accounted for clustering. Six (85.7%) clearly accounted for clustering in the analysis. All results papers reported use of Bayesian methods in the analysis but none in the design or sample size calculation. Conclusions The popularity of the CRCT design has increased rapidly in the last twenty years but this has not been mirrored by an uptake of Bayesian methodology in this context. Of studies using Bayesian methodology, there were some differences in reporting quality compared to CRCTs in general, but this study provided insufficient data to draw firm conclusions. There is an opportunity to further develop Bayesian methodology for the design and analysis of CRCTs in order to expand the accessibility, availability, and, ultimately, use of this approach.

Publisher

Springer Science and Business Media LLC

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3