Author:
Shaik Jakeer Hussain,J Srinivas
Abstract
Abstract
Background
Machining using vertical CNC end mill is popular in the modern material removal industries because of its ability to remove the material at a fast rate with a reasonably good surface quality.
Methods
In this work, the influence of important common machining process variables like feed, cutting speed and axial depth of cut on the output parameters such as surface roughness and amplitude of tool vibration levels in Al-6061 workpieces has been studied. With the use of experimental result analysis and mathematical modelling, correlations between the cutting process conditions and process outputs are studied in detail. The cutting experiments are planned with response surface methodology (RSM) using Box-Behnken design (BBD).
Results
This work proposes a multi-objective optimization approach based on genetic algorithms using experimental data so as to simultaneously minimize the tool vibration amplitudes and work-piece surface roughness. The optimum combination of process variable is further verified by the radial basis neural network model.
Conclusions
Finally, based on the multi-objective optimization approach and neural network models an interactive platform is developed to obtain the correct combination of process parameters.
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献