Experimental Optimization of High-precision Turning Parameters of AL6061 Materials for Automotive Industry Based on Grey Relational Analysis

Author:

Puoza Julius Caesar,Zhang Tainyao,Uba Felix,Kuusana Yakubu,Ibrahim Awudu

Abstract

This research article aims to explore the relationship between the machining parameters of a Slant Bed Turning Centre Computer Numerical Control (SB/C/CNC) precision lathe and surface microhardness, dimensional error and surface roughness of AL6061. A technique called the central composite design (CCD) method with 13 experiments was used to evaluate the surface microhardness, dimensional error, and surface roughness after a turning operation using a micro-grooved texture tool. Separate prediction models were developed for each of these characteristics using the response surface method (RSM) in order to find the optimal process parameters for each characteristic. The analysis of variance revealed that the prediction models for surface microhardness, dimensional error, and surface roughness were highly significant, with p-values less than 0.0001. The process parameters that resulted in the highest surface microhardness were a cutting speed (Vc) of 154.363 m/min and a feed rate (fz) of 0.231 mm/rev. On the other hand, the process parameters that led to the lowest dimensional error and surface roughness were Vc = 154.363 m/min, fz = 0.1389 mm/rev, and Vc = 152.081 m/min, fz = 0.1025 mm/rev, respectively. The multi-objective prediction model based on gray relational analysis showed an error range of 1.5% to 3.1% and a minimum gray relational degree value of 0.3503 within the feasible process parameter range. The accuracy of this multi-objective prediction model was higher, with a stronger response to the cutting speed Vc compared to the feed rate fz. The determined feasible process parameter range serves as a useful reference for engineers working with AL6061 materials in turning operations.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3