Abstract
Abstract
Background
In syllids (Annelida, Syllidae), the regenerative blastema was subject of many studies in the mid and late XXth century. This work on syllid regeneration showed that the blastema is developed by a process of dedifferentiation of cells near the wound, followed by their proliferation and redifferentiation (cells differentiate to the original cell type) or, in some specific cases, transdifferentiation (cells differentiate to a cell type different from the original). Up to date, participation of stem cells or pre-existing proliferative cells in the blastema development has never been observed in syllids. This study provides the first comprehensive description of Syllis malaquini’s regenerative capacity, including data on the cellular proliferation dynamics by using an EdU/BrdU labelling approach, in order to trace proliferative cells (S-phase cells) present before and after operation.
Results
Syllis malaquini can restore the anterior and posterior body from different cutting levels under experimental conditions, even from midbody fragments. Our results on cellular proliferation showed that S-phase cells present in the body before bisection do not significantly contribute to blastema development. However, in some specimens cut at the level of the proventricle, cells in S-phase located in the digestive tube before bisection participated in regeneration. Also, our results showed that nucleus shape allows to distinguish different types of blastemal cells as forming specific tissues. Additionally, simultaneous and sequential addition of segments seem to occur in anterior regeneration, while only sequential addition was observed in posterior regeneration. Remarkably, in contrast with previous studies in syllids, sexual reproduction was not induced during anterior regeneration of amputees lacking the proventricle, a foregut organ widely known to be involved in the stolonization control.
Conclusions
Our findings led us to consider that although dedifferentiation and redifferentiation might be more common, proliferative cells present before injury can be involved in regenerative processes in syllids, at least in some cases. Also, we provide data for comparative studies on resegmentation as a process that differs between anterior and posterior regeneration; and on the controversial role of the proventricle in the reproduction of different syllid lineages.
Funder
Ministerio de Economía y Competitividad
Georg-August-Universität Göttingen
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference87 articles.
1. Hill SD. Origin of the regeneration blastema in polychaete annelids. Am Zool. 1970;10:101–12.
2. Özpolat BD, Bely AE. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Curr Opin Genet Dev. 2016. https://doi.org/10.1016/j.gde.2016.07.010.
3. Zattara EE. Axial regeneration in segmented animals: a post-embryonic reboot of the segmentation process. Cell Process Segmentation. 1st ed. Boca Raton: CRC Press; 2020. p. 255–92.
4. Boilly B. Sur l’origine des cellules régénératrices chez les annélides polychètes. Arch Zool Expérimentale Générale. 1969;110:127–43.
5. Clark ME, Clark RB. Growth and regeneration in Nephtys. Zool Jahrb Physiol. 1962;70:24–90.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献