Distinct stem-like cell populations facilitate functional regeneration of the Cladonema medusa tentacle

Author:

Fujita Sosuke,Takahashi Mako,Kumano Gaku,Kuranaga Erina,Miura Masayuki,Nakajima Yu-ichiroORCID

Abstract

Blastema formation is a crucial process that provides a cellular source for regenerating tissues and organs. While bilaterians have diversified blastema formation methods, its mechanisms in non-bilaterians remain poorly understood. Cnidarian jellyfish, or medusae, represent early-branching metazoans that exhibit complex morphology and possess defined appendage structures highlighted by tentacles with stinging cells (nematocytes). Here, we investigate the mechanisms of tentacle regeneration, using the hydrozoan jellyfish Cladonema pacificum. We show that proliferative cells accumulate at the tentacle amputation site and form a blastema composed of cells with stem cell morphology. Nucleoside pulse-chase experiments indicate that most repair-specific proliferative cells (RSPCs) in the blastema are distinct from resident stem cells. We further demonstrate that resident stem cells control nematogenesis and tentacle elongation during both homeostasis and regeneration as homeostatic stem cells, while RSPCs preferentially differentiate into epithelial cells in the newly formed tentacle, analogous to lineage-restricted stem/progenitor cells observed in salamander limbs. Taken together, our findings propose a regeneration mechanism that utilizes both resident homeostatic stem cells (RHSCs) and RSPCs, which in conjunction efficiently enable functional appendage regeneration, and provide novel insight into the diversification of blastema formation across animal evolution.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Japan Agency for Medical Research and Development

National Institute for Basic Biology

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3