Abstract
Abstract
Background
Temperature affects many aspects of performance in poikilotherms, including how prey respond when encountering predators. Studies of anti-predator responses in fish mainly have focused on behaviour, whereas physiological responses regulated through the hypothalamic-pituitary-interrenal axis have received little attention. We examined plasma cortisol and mRNA levels of stress-related genes in juvenile brown trout (Salmo trutta) at 3 and 8 °C in the presence and absence of a piscivorous fish (burbot, Lota lota).
Results
A redundancy analysis revealed that both water temperature and the presence of the predator explained a significant amount of the observed variation in cortisol and mRNA levels (11.4 and 2.8%, respectively). Trout had higher cortisol levels in the presence than in the absence of the predator. Analyses of individual gene expressions revealed that trout had significantly higher mRNA levels for 11 of the 16 examined genes at 3 than at 8 °C, and for one gene (retinol-binding protein 1), mRNA levels were higher in the presence than in the absence of the predator. Moreover, we found interaction effects between temperature and predator presence for two genes that code for serotonin and glucocorticoid receptors.
Conclusions
Our results suggest that piscivorous fish elicit primary stress responses in juvenile salmonids and that some of these responses may be temperature dependent. In addition, this study emphasizes the strong temperature dependence of primary stress responses in poikilotherms, with possible implications for a warming climate.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference82 articles.
1. Dell AI, Pawar S, Savage VM. Systematic variation in the temperature dependence of physiological and ecological traits. PNAS. 2011;108:10591–6.
2. Dell AI, Pawar S, Savage VM. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J Anim Ecol. 2014;83:70–84.
3. Englund G, Öhlund G, Hein CL, Diehl S. Temperature dependence of the functional response. Ecol Lett. 2011;14:914–21.
4. Grigaltchik VS, Ward AJW, Seebacher F. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship. P Roy Soc B. 2012;279:4058–64.
5. Öhlund G, Hedström P, Norman S, Hein CL, Englund G. Temperature dependence of predation depends on the relative performance of predators and prey. P Roy Soc B. 2014;282:20142254.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献