Within-family plasticity of nervous system architecture in Syllidae (Annelida, Errantia)

Author:

Schmidbaur Hannah,Schwaha Thomas,Franzkoch Rico,Purschke Günter,Steiner Gerhard

Abstract

Abstract Background The ground pattern underlying the nervous system of the last common ancestor in annelids was long thought to be settled, consisting of a dorsal brain, circumoesophageal connectives and a subepithelial, ladder-like ventral nerve cord with segmental ganglia connected by paired connectives. With the advent of immunocytochemical stainings and confocal laser scanning microscopy, it becomes evident that its architecture is extremely diverse, which makes the reconstruction of a ground pattern in annelida challenging. Whereas the nervous systems of many different families has already been described, only very few studies looked at the diversity of nervous systems within such clades to give a closer estimate on how plastic the annelid nervous system really is. So far, little is known on syllid nervous system architecture, one of the largest and most diverse groups of marine annelids. Results The position of the brain, the circumoesophageal connectives, the stomatogastric nervous system, the longitudinal nerves that traverse each segment and the innervation of appendages are relatively uniform within the clade. Both the number of connectives within the ventral nerve cord and the number of segmental nerves, which in earlier studies were used to infer phylogenetic relationships and to reconstruct an annelid ground pattern, are highly diverse and differ between genera or even within a given genus. Differences in the distribution of somata of the brain, the nuchal innervation and its associated cell bodies were found between Syllinae and Exogoninae and may be subfamily-specific. Conclusions The nervous system morphology of syllids very likely depends on the taxon-specific ecological requirements. Thus, it is not surprising that in a clade, which occupies such diverse niches as the Annelida, we find similar patterns in phylogenetically widely separated species in similar niches and a high degree of modularity within a family. Only standardized protocols and staining methods can lead to comparable results, but so far different approaches have been taken to describe annelid nervous systems, making homologization of certain structures difficult. This study provides the first thorough description of the nervous system in the family Syllidae, allowing more detailed comparisons between annelid families in the future.

Funder

Universität Wien

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3