Development and structure of the anterior nervous system and sense organs in the holopelagic annelid Tomopteris spp. (Phyllodocida, Errantia)

Author:

Purschke GünterORCID,Helm Conrad

Abstract

AbstractTomopteridae are transparent, predatory Annelida inhabiting pelagic ocean zones. Despite being well-known for their fast metachronal swimming and species-specific bioluminescence, our knowledge of morphological adaptations in these fascinating holopelagic worms remains extremely limited. In particular, the evolutionary scenarios and adaptive changes related to the transition from putative benthic ancestors to recent free-swimming groups remain poorly investigated and understood. Therefore, we investigated different taxa and developmental stages within the holopelagic Tomopteridae. We used a comparative morphological approach, including a range of microscopic methods, in our investigations focused on the anterior nervous system and prominent sensory structures, such as nuchal organs and tentacular cirri, in early developmental and adult stages of four tomopterid species. Our data show that Tomopteridae undergo heterochronic, lecithotrophic development with early visibility of adult-like features, which is consistent with earlier investigations. Furthermore, our ultrastructural examinations of the tomopterid nuchal organ highlight the conservativism in the fine structure and development of this prominent polychaete chemosensory organ. Nevertheless, our data indicate ultrastructural differences, such as an extraordinary number of supporting cell types and a bipartite olfactory chamber, potentially related to their pelagic lifestyle. In contrast to previous assumptions, it is shown that the supporting structures in the cirrus-like appendages of the first chaetiger contain prominent intracellular skeletal elements rather than annelid chaetae. These findings highlight the need for further investigations to understand Annelida’s immense morphological diversity of organ systems. Furthermore, our data demonstrate the necessity of functional analyses to understand Annelida’s adaptive radiation of sensory and neuronal structures.

Funder

DFG

Universität Osnabrück

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3