Ontogenetic plasticity in cranial morphology is associated with a change in the food processing behavior in Alpine newts

Author:

Schwarz DanielORCID,Konow Nicolai,Porro Laura B.,Heiss Egon

Abstract

Abstract Background The feeding apparatus of salamanders consists mainly of the cranium, mandible, teeth, hyobranchial apparatus and the muscles of the cranial region. The morphology of the feeding apparatus in turn determines the boundary conditions for possible food processing (i.e., intraoral mechanical reduction) mechanisms. However, the morphology of the feeding apparatus changes substantially during metamorphosis, prompting the hypothesis that larvae might use a different food processing mechanism than post-metamorphic adults. Salamandrid newts with facultative metamorphosis are suitable for testing this hypothesis as adults with divergent feeding apparatus morphologies often coexist in the same population, share similar body sizes, and feed on overlapping prey spectra. Methods We use high-speed videography to quantify the in vivo movements of key anatomical elements during food processing in paedomorphic and metamorphic Alpine newts (Ichthyosaura alpestris). Additionally, we use micro-computed tomography (μCT) to analyze morphological differences in the feeding apparatus of paedomorphic and metamorphic Alpine newts and sort them into late-larval, mid-metamorphic and post-metamorphic morphotypes. Results Late-larval, mid-metamorphic and post-metamorphic individuals exhibited clear morphological differences in their feeding apparatus. Regardless of the paedomorphic state being externally evident, paedomorphic specimens can conceal different morphotypes (i.e., late-larval and mid-metamorphic morphotypes). Though feeding on the same prey under the same (aquatic) condition, food processing kinematics differed between late-larval, mid-metamorphic and post-metamorphic morphotypes. Conclusions The food processing mechanism in the Alpine newt changes along with morphology of the feeding apparatus during ontogeny, from a mandible-based to a tongue-based processing mechanism as the changing morphology of the mandible prevents chewing and the tongue allows enhanced protraction. These results could indicate that early tetrapods, in analogy to salamanders, may have developed new feeding mechanisms in their aquatic environment and that these functional innovations may have later paved the way for terrestrial feeding mechanisms.

Funder

Deutsche Forschungsgemeinschaft

University of Massachusetts Lowell start-up funds

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rhythmic chew cycles with distinct fast and slow phases are ancestral to gnathostomes;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

2. Do salamanders chew? An X-ray reconstruction of moving morphology analysis of ambystomatid intraoral feeding behaviours;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

3. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

4. Aquatic Feeding in Lissamphibia;Convergent Evolution;2023

5. Computed tomography and three-dimensional reconstruction of the skull of the stem tetrapodCrassigyrinus scoticusWatson, 1929;Journal of Vertebrate Paleontology;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3