Integrated metabolomic and transcriptomic profiling reveals the tissue-specific flavonoid compositions and their biosynthesis pathways in Ziziphora bungeana

Author:

He Jiang,Yang Weijun,Cheng Bo,Ma Lina,Tursunjiang Dilinuer,Ding Zimian,Li Yong,Wang Zhaofeng,Ma YimianORCID,Li Guan

Abstract

Abstract Background Ziziphora bungeana Juz. is a folk medicine from the Xinjiang Uygur Autonomous Region. The herb or the aerial parts of it have been used to medicinally treat cardiovascular diseases. Flavonoids are the main pharmacologically active ingredients in Z. bungeana. Identification of the tissue-specific distribution of flavonoids in Z. bungeana is crucial for effective and sustainable medicinal use of the plant. Furthermore, understanding of the biosynthesis pathways of these flavonoids in Z. bungeana is of great biological significance. Methods The flavonoids from different tissues of Z. bungeana were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The full-length transcriptome of Z. bungeana was determined using a strategy based on a combination of Illumina and PacBio sequencing techniques. The functions of differentially expressed unigenes were predicted using bioinformatics methods and further investigated by real-time quantitative PCR and phylogenetic relationship analysis. Results Among the 12 major flavonoid components identified from Z. bungeana extracts, linarin was the most abundant component. Nine flavonoids were identified as characteristic components of specific tissues. Transcriptome profiling and bioinformatic analysis revealed that 18 genes were putatively involved in flavonoid biosynthesis. The gene expression and phylogenetic analysis results indicated that ZbPALs, Zb4CL3, ZbCHS1, and ZbCHI1 may be involved in the biosynthesis of the main flavonoid intermediate. ZbFNSII, ZbANS, and ZbFLS may be involved in the biosynthesis of flavones, anthocyanins, and flavonols, respectively. A map of the biosynthesis pathways of the 12 major flavonoids in Z. bungeana is proposed. Conclusions The chemical constituent analysis revealed the compositions of 9 characteristic flavonoids in different tissues of Z. bungeana. Linarin can be hydrolysed into acacetin to exert a pharmaceutical role. Apigenin-7-O-rutinoside is hypothesised to be the precursor of linarin in Z. bungeana. There was greater content of linarin in the aerial parts of the plant than in the whole herb, which provides a theoretical basis for using the aerial parts of Z. bungeana for medicine. These results provide a valuable reference for further research on the flavonoid biosynthesis pathways of Z. bungeana and will be significant for the effective utilisation and ecological protection of Z. bungeana.

Funder

National Natural Science Foundation of China

Tianshan Innovation Team in the Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3