Global trends and prospects about inflammasomes in stroke: a bibliometric analysis

Author:

Yin Junjun,Wan Jiayang,Zhu Jiaqi,Zhou Guoying,Pan Yuming,Zhou Huifen

Abstract

Abstract Background Sterile inflammation is a key pathological process in stroke. Inflammasome activation has been implicated in various inflammatory diseases, including ischemic stroke and hemorrhagic stroke. Hence, targeting inflammasomes is a promising approach for the treatment of stroke. Methods We applied bibliometric methods and techniques. The Web of Science Core Collection was searched for studies indexed from database inception to November 26, 2020. We generated various visual maps to display publications, authors, sources, countries, and keywords. Results Our literature search yielded 427 publications related to inflammasomes involved in stroke, most of which consisted of original research articles and reviews. In particular, we found that there was a substantial increase in the number of relevant publications in 2018. Furthermore, most of the publications with the highest citation rates were published in 2014. Relatively, the field about inflammasomes in stroke developed rapidly in 2014 and 2018. Many institutions contributed to these publications, including those from China, the United States, and worldwide. We found that NLR family pyrin domain containing 3 (NLRP3) was the most studied, followed by NLRP1, NLRP2, and NLRC4 among the inflammasomes associated with stroke. Analysis of keywords suggested that the most studied mechanisms involved dysregulation of extracellular pH, efflux of Ca2+ ions, dysfunction of K+/Na+ ATPases, mitochondrial dysfunction, and damage to mitochondrial DNA. Conclusions Given the potential diagnostic and therapeutic implications, the specific mechanisms of inflammasomes contributing to stroke warrant further investigation. We used bibliometric methods to objectively present the global trend of inflammasomes in stroke, and to provide important information for relevant researchers.

Funder

National Natural Science Foundation of China

National Key R & D Projects of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3