Author:
Bai Ning,Zhang Quanguang,Zhang Wenli,Liu Bin,Yang Fang,Brann Darrell,Wang Ruimin
Abstract
Abstract
Background
G-protein-coupled estrogen receptor (GPER/GPR30) is a novel membrane-associated estrogen receptor that can induce rapid kinase signaling in various cells. Activation of GPER can prevent hippocampal neuronal cell death following transient global cerebral ischemia (GCI), although the mechanisms remain unclear. In the current study, we sought to address whether GPER activation exerts potent anti-inflammatory effects in the rat hippocampus after GCI as a potential mechanism to limit neuronal cell death.
Methods
GCI was induced by four-vessel occlusion in ovariectomized female SD rats. Specific agonist G1 or antagonist G36 of GPER was administrated using minipump, and antisense oligonucleotide (AS) of interleukin-1β receptor antagonist (IL1RA) was administrated using brain infusion kit. Protein expression of IL1RA, NF-κB-P65, phosphorylation of CREB (p-CREB), Bcl2, cleaved caspase 3, and microglial markers Iba1, CD11b, as well as inflammasome components NLRP3, ASC, cleaved caspase 1, and Cle-IL1β in the hippocampal CA1 region were investigated by immunofluorescent staining and Western blot analysis. The Duolink II in situ proximity ligation assay (PLA) was performed to detect the interaction between NLRP3 and ASC. Immunofluorescent staining for NeuN and TUNEL analysis were used to analyze neuronal survival and apoptosis, respectively. We performed Barnes maze and Novel object tests to compare the cognitive function of the rats.
Results
The results showed that G1 attenuated GCI-induced elevation of Iba1 and CD11b in the hippocampal CA1 region at 14 days of reperfusion, and this effect was blocked by G36. G1 treatment also markedly decreased expression of the NLRP3-ASC-caspase 1 inflammasome and IL1β activation, as well as downstream NF-κB signaling, the effects reversed by G36 administration. Intriguingly, G1 caused a robust elevation in neurons of a well-known endogenous anti-inflammatory factor IL1RA, which was reversed by G36 treatment. G1 also enhanced p-CREB level in the hippocampus, a transcription factor known to enhance expression of IL1RA. Finally, in vivo IL1RA-AS abolished the anti-inflammatory, neuroprotective, and anti-apoptotic effects of G1 after GCI and reversed the cognitive-enhancing effects of G1 at 14 days after GCI.
Conclusions
Taken together, the current results suggest that GPER preserves cognitive function following GCI in part by exerting anti-inflammatory effects and enhancing the defense mechanism of neurons by upregulating IL1RA.
Funder
Natural Science Foundation of CHINA
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience