Jin-Tian-Ge ameliorates ovariectomy-induced bone loss in rats and modulates osteoblastogenesis and osteoclastogenesis in vitro

Author:

Shen Yi,Wang Na,Zhang Qi,Liu Yuling,Wu Qudi,He Yuqiong,Wang Yang,Wang Xiaoyan,Zhao Qiming,Zhang Quanlong,Qin Luping,Zhang Qiaoyan

Abstract

Abstract Background Tiger bone, which had been one of the most famous traditional Chinese medicine for 2000 years, was originate from the skeleton of Panthera tigris L., and had the actions of anti-inflammatory, analgesic, immune-regulatory and promoting healing of bone fracture, and was used for the treatment of osteoporosis and rheumatoid arthritis. Jin-Tian-Ge (JTG), the artificial tiger bone powder, were prepared from skeletons of several farmed animals to substitute the natural tiger bone, and has been used for the treatment of osteoporosis in clinical practice. However, the characteristic and mechanism of action of JTG for the therapy of osteoporosis need to be further evidenced by using modern pharmacological methods. The aim of this work is to investigate the bone-protective effects of JTG, and explore the possible underlying mechanism. Methods Ovariectomy (OVX) rats were orally administrated JTG or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of JTG on anti-bone loss in OVX rats, and also investigated the role of JTG in promoting osteogenesis and inhibiting osteoclast differentiation. Results JTG increased the bone mineral density (BMD), improved the bone microarchitecture and biomechanical properties in ovariectomized rast, whereas reversed the bone high turnover in OVX rats as evidenced by serum biochemical markers in OVX rats. JTG increased osteogenic differentiation of BMSCs in vitro, and up-regulated the expression of the key proteins of BMP and Wnt/β-catenin pathways. JTG also inhibited the osteoclastogenesis of BMM as evidenced by the alteration of the TRAP activity, F-actin construction and the expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, Cathepsin K (Ctsk) and matrix metallopeptidase 9 (MMP9) of OCs induced with RANKL and LPS, reduced the expression and phosphorylation of NF-κB in OCs. Conclusions JTG prevented bone loss in OVX rats and increased osteogenic differentiation of BMSCs through regulation of the BMP and Wnt/β-catenin pathway, inhibited osteoclastogenesis by suppressing the NF-κB pathway, suggesting that JTG had the potentials for prevention and treatment of osteoporosis by modulating formation and differentiation of osteoblast and osteoclast.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3