Combined with UPLC-Triple-TOF/MS-based plasma lipidomics and molecular pharmacology reveals the mechanisms of schisandrin against Alzheimer’s disease

Author:

Zhao Tian-tian,Zhang Ying,Zhang Cheng-qin,Chang Ya-fei,Cui Mei-rong,Sun Yue,Hao Wen-qian,Yan Yu-meng,Gu Shuo,Xie Yao,Wei Bin-binORCID

Abstract

Abstract Background Alzheimer’s disease (AD), a type of neurodegeneration disease, is characterized by Aβ deposition and tangles of nerve fibers. Schisandrin is one of the main components of Fructus Schisandrae Chinensis. Researches showed that schisandrin can improve the cognitive impairment and memory of AD mice, but the specific mechanism has not been fully elucidated. Purpose The purpose of this study is to investigate the possible mechanism of schisandrin in improving AD pathology. Methods The Morris water maze test was executed to detect spatial learning and memory. Ultra performance liquid chromatography-Triple time of flight mass spectrometry (UPLC-Triple-TOF/MS)-based plasma lipidomics was used to study the changes of plasma lipids. Moreover, we measured the levels of protein and mRNA expression of APOE and ABCA1 in the rat brains and in BV2 microglia. Results Our study found that schisandrin could improve learning and memory, and reduce Aβ deposition in AD rats. Furthermore, we found that schisandrin can improve plasma lipid metabolism disorders. Therefore, we hypothesized schisandrin might act via LXR and the docking results showed that schisandrin interacts with LXRβ. Further, we found schisandrin increased the protein and mRNA expression of LXR target genes APOE and ABCA1 in the brain of AD rats and in BV2 microglia. Conclusion Our study reveals the neuroprotective effect and mechanism of schisandrin improves AD pathology by activating LXR to produce APOE and ABCA1.

Funder

National Natural Science Foundation of China

Science and Technology Program of Shenyang, China

Natural Science Research Program Of Yichang city

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3