MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1

Author:

Xu Xianglai,Li Shiqi,Lin Yiwei,Chen Hong,Hu Zhenghui,Mao Yeqing,Xu Xin,Wu Jian,Zhu Yi,Zheng Xiangyi,Luo Jindan,Xie Liping

Abstract

Abstract Background Increasing evidence has suggested that dysregulation of certain microRNAs (miRNAs) may contribute to human disease including carcinogenesis and tumor metastasis in human. miR-124-3p is down-regulated in various cancers, and modulates proliferation and aggressiveness of cancer cells. However, the roles of miR-124-3p in human bladder cancer are elusive. Thus, this study was conducted to investigate the biological functions and its molecular mechanisms of miR-124-3p in human bladder cancer cell lines, discussing whether it has a potential to be a therapeutic biomarker of bladder cancer. Methods Three human bladder cancer cell lines and samples from ten patients with bladder cancer were analyzed for the expression of miR-124-3p by quantitative RT--PCR. Exogenetic overexpression of miR-124-3p was established by transfecting mimics into T24, UM-UC-3 and J82 cells, after that cell proliferation and cell cycle were assessed by MTT assay, flow cytometry and Colony-forming assay. Cell motility and invasion ability were evaluated by wound healing assay and transwell assay. Tissue microarray, and immunohistochemistry with antibodies against ROCK1, MMP2 and MMP9 was performed using the peroxidase and DAB methods. The target gene of miR-124-3p was determined by luciferase assays, quantitative RT--PCR and western blot. The regulation of epithelial-to-mesenchymal transition by miR-124-3p was analyzed by western blot. Results miR-124-3p is frequently down-regulated in bladder cancer both in three bladder cancer cell lines, T24, UM-UC-3, J82 and clinical samples. Overexpression of miR-124-3p induced G1-phase arrest in T24, UM-UC-3 and J82 cell lines and suppressed cell growth in colony-forming assay. miR-124-3p significantly repressed the capability of migration and invasion of bladder cancer cells. In addition, ROCK1 was identified as a new target of miR-124-3p. ROCK1, MMP2, MMP9 were up-regulated in bladder cancer tissues. Furthermore, we demonstrated miR-124-3p could inhibit bladder cancer cell epithelial mesenchymal transfer, and regulated the expression of c-Met, MMP2, MMP9. Conclusions miR-124-3p can repress the migration and invasion of bladder cancer cells via regulating ROCK1. Our data indicate that miR-124-3p could be a tumor suppressor and may have a potential to be a diagnostics or predictive biomarker in bladder cancer.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3