Author:
Jukic Drazen M,Rao Uma NM,Kelly Lori,Skaf Jihad S,Drogowski Laura M,Kirkwood John M,Panelli Monica C
Abstract
Abstract
Background
This study represents the first attempt to perform a profiling analysis of the intergenerational differences in the microRNAs (miRNAs) of primary cutaneous melanocytic neoplasms in young adult and older age groups. The data emphasize the importance of these master regulators in the transcriptional machinery of melanocytic neoplasms and suggest that differential levels of expressions of these miRs may contribute to differences in phenotypic and pathologic presentation of melanocytic neoplasms at different ages.
Methods
An exploratory miRNA analysis of 666 miRs by low density microRNA arrays was conducted on formalin fixed and paraffin embedded tissues (FFPE) from 10 older adults and 10 young adults including conventional melanoma and melanocytic neoplasms of uncertain biological significance. Age-matched benign melanocytic nevi were used as controls.
Results
Primary melanoma in patients greater than 60 years old was characterized by the increased expression of miRs regulating TLR-MyD88-NF-kappaB pathway (hsa-miR-199a), RAS/RAB22A pathway (hsa-miR-204); growth differentiation and migration (hsa-miR337), epithelial mesenchymal transition (EMT) (let-7b, hsa-miR-10b/10b*), invasion and metastasis (hsa-miR-10b/10b*), hsa-miR-30a/e*, hsa-miR-29c*; cellular matrix components (hsa-miR-29c*); invasion-cytokinesis (hsa-miR-99b*) compared to melanoma of younger patients. MiR-211 was dramatically downregulated compared to nevi controls, decreased with increasing age and was among the miRs linked to metastatic processes. Melanoma in young adult patients had increased expression of hsa-miR-449a and decreased expression of hsa-miR-146b, hsa-miR-214*. MiR-30a* in clinical stages I-II adult and pediatric melanoma could predict classification of melanoma tissue in the two extremes of age groups. Although the number of cases is small, positive lymph node status in the two age groups was characterized by the statistically significant expression of hsa-miR-30a* and hsa-miR-204 (F-test, p-value < 0.001).
Conclusions
Our findings, although preliminary, support the notion that the differential biology of melanoma at the extremes of age is driven, in part, by deregulation of microRNA expression and by fine tuning of miRs that are already known to regulate cell cycle, inflammation, Epithelial-Mesenchymal Transition (EMT)/stroma and more specifically genes known to be altered in melanoma. Our analysis reveals that miR expression differences create unique patterns of frequently affected biological processes that clearly distinguish old age from young age melanomas. This is a novel characterization of the miRnomes of melanocytic neoplasms at two extremes of age and identifies potential diagnostic and clinico-pathologic biomarkers that may serve as novel miR-based targeted modalities in melanoma diagnosis and treatment.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference79 articles.
1. Bleyer A, OlM , Barr R, Ries LAG: Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival:1975-2000. Bethesda, MD: NIH Pub No 06-5767.
2. Bleyer A, Viny A, Barr R: Cancer in 15- to 29-year-olds by primary site. The Oncologist. 2006, 11 (6): 590-601. 10.1634/theoncologist.11-6-590.
3. Bleyer WA: Cancer in older adolescents and young adults: epidemiology, diagnosis, treatment, survival, and importance of clinical trials. Med Pediatr Oncol. 2002, 38 (1): 1-10. 10.1002/mpo.1257.
4. Pappo AS: Melanoma in children and adolescents. Eur J Cancer. 2003, 39 (18): 2651-2661. 10.1016/j.ejca.2003.06.001.
5. Lange JR, Palis BE, Chang DC, Soong S-J, Balch CM: Melanoma in Children and Teenagers: An Analysis of Patients From the National Cancer Data Base. J Clin Oncol. 2007, 25 (11): 1363-1368. 10.1200/JCO.2006.08.8310.
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献