Abstract
Abstract
Background
Probiotic bacteria can provide health benefits when delivered in functional foods. This study involved isolation of lactic acid bacteria (LAB) from traditionally dried and salted anchovy fish and characterization of their survival in simulated gastrointestinal digestion. Promising strains were used to prepare fermented fish sausages which were then evaluated for cytotoxicity activity against two cancer cell-lines, antidiabetic activity as determined by α-amylase and α-glucosidase inhibition, and antioxidant and proteolytic activities in vitro, as compared to non-fermented control sausages.
Results
Out of 85 LAB obtained, 13 isolates with high tolerance to simulated gastrointestinal digestion were obtained, which were identified as Enterococcus spp. Four E. faecium strains, one E. faecalis, and one E. durans were used separately to make fermented fish sausages. The α-amylase and α-glucosidase inhibition from fish sausages fermented by Enterococcus spp. ranged from 29.2 to 68.7% and 23.9 to 41.4%, respectively, during 21 days of storage. The cytotoxicity activities against Caco2 and MCF-7 cells of fish sausages fermented with Enterococcus spp. ranged from 18.0 to 24% and 13.9 to 27.9%, respectively. Cytotoxicity activities correlated positively with proteolysis and antioxidant activities, α-amylase and α-glucosidase inhibition activities, but negatively with the pH in fermented fish sausages. Strains also exhibited antimicrobial activity against foodborne pathogens and presented no significant concerns with regards to antibiotic resistance or virulence gene content.
Conclusions
Fish sausages fermented by potential probiotic isolates of Enterococcus spp. from dried fish had valuable health-promoting benefits compared with non-fermented control sausages.
Funder
United Arab Emirates University
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference46 articles.
1. FAO/WHO: FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, April 30 and May 1, World Health Organization,
http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
. 2002.
2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506.
3. Khan SU. Probiotics in dairy foods: a review. Nutr Food Sci. 2014;44:71–88.
https://doi.org/10.1108/NFS-04-2013-0051
.
4. Naidu A, Bidlack W, Clemens R. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr. 1999;39:13–126.
5. Das P, Khowala S, Biswas S. In vitro probiotic characterization of Lactobacillus casei isolated from marine samples. LWT Food Sci Technol. 2016;73:383–90.
https://doi.org/10.1016/j.lwt.2016.06.029
.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献