Evaluation of the hepato-renal functions and antimicrobial activity of fatty amido benzoic acid synthesised from Citrullus colocynthis seed oil

Author:

Adewuyi Adewale,Otuechere Chiagoziem A.,Ellah Nkechi H.,Kaki Shiva Shanker,Fayemi Scott O.,Adeosun Charles B.

Abstract

AbstractRapid progression in resistance to antimicrobial agents by pathogenic organisms is a serious concern. This study aimed to synthesize fatty amido benzoic acid (FBA) from Citrullus colocynthis seed oil (CCO) and evaluate its safety profile as an alternative bioactive agent for combating drug-resistant pathogens. FBA was synthesised through simple chemical reaction route and examined for its antioxidant activity and antimicrobial capacity against selected drug-resistant microorganisms. Effect of FBA on hepato-renal function makers and oxidative stress was also examined using Wistar rats. Density functional theory (DFT) approach was employed to understand the action of FBA with the aid of lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Gas Chromatography (GC) revealed the most abundant fatty acid in CCO to be C18:2 (55.88%). Results from Fourier transformed infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1HNMR) confirmed the synthesis of FBA with a yield of 97.10%. FBA exhibited antioxidant potential (IC50 of 1.96 µg mL−1) as well as antimicrobial potency. Minimum inhibitory concentration (MIC) of FBA was 0.026 mg mL−1. Biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, hydrogen peroxide, and lipid peroxidation were significantly elevated in rats administered high dose FBA (100 mg kg−1). Histology of the liver and kidney confirmed the biochemical results. Furthermore, mechanism of action of FBA could be described by quantum chemical analysis to be via nucleophilic interaction, which may be viewed electronically as donor–acceptor interaction. The study presents FBA as a promising antimicrobial agent for combating drug-resistant pathogenic organisms.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3