Wild radish (Raphanus sativus var. hortensis f. raphanistroides) root extract protects neuronal cells by inhibiting microglial activation

Author:

Do Moon Ho,Kim Mina,Choi Sang-Yoon,Lee Pyeongjae,Kim Yoonsook,Hur JinyoungORCID

Abstract

AbstractExternal stimulus-induced activation of microglia plays an important role in the protection of neurons in the central nervous system; however, over-activation of microglia could cause neuronal damage, and it is implicated in the pathogenesis of neurodegenerative diseases. The aim of the present study was to investigate the effects of wild radish (Raphanus sativus var. hortensis f. raphanistroides) root extract (WRE) on microglial over-activation. Mouse microglia BV-2 cells and rat primary microglia were stimulated with lipopolysaccharide (LPS), treated with WRE, and analyzed for nitric oxide (NO) production, pro-inflammatory cytokine secretion, inducible NO synthase (iNOS) expression, and p38 kinase phosphorylation. Human neuroblastoma SH-SY5Y cells were treated with microglia-conditioned medium and analyzed for cell viability. Stimulation with LPS increased NO production and iNOS expression in BV-2 cells and primary microglia, but the treatment with WRE decreased both. Furthermore, WRE downregulated the mRNA expression and secretion of inflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), and inhibited the phosphorylation of p38 in LPS-activated microglia. Treatment with the conditioned medium of LPS-induced BV-2 cells decreased the viability of SH-SY5Y cells, but the damaging effect was significantly alleviated in cells treated with the conditioned medium of LPS plus WRE-cultured microglia. This indicated that the WRE treatment of microglia could protect neuronal cells from microglial activation-induced neurotoxicity. WRE may be a potential food product to attenuate neuroinflammation via the inhibition of microglial over-activation, which can slow down the neurodegenerative processes in the brain.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3