A novel surgical model for the preclinical assessment of the osseointegration of dental implants: a surgical protocol and pilot study results

Author:

AlOtaibi Noura M.ORCID,Dunne Michael,Ayoub Ashraf F.,Naudi Kurt B.

Abstract

Abstract Background Dental implants are considered the gold standard replacement for missing natural teeth. The successful clinical performance of dental implants is due to their ability to osseointegrate with the surrounding bone. Most dental implants are manufactured from Titanium and it alloys. Titanium does however have some shortcomings so alternative materials are frequently being investigated. Effective preclinical studies are essential to transfer the innovations from the benchtop to the patients. Many preclinical studies are carried out in the extra-oral bones of small animal models to assess the osseointegration of the newly developed materials. This does not simulate the oral environment where the dental implants are subjected to several factors that influence osseointegration; therefore, they can have limited clinical value. Aim This study aimed to develop an appropriate in-vivo model for dental implant research that mimic the clinical setting. The study evaluated the applicability of the new model and investigated the impact of the surgical procedure on animal welfare. Materials and methods The model was developed in male New Zealand white rabbits. The implants were inserted in the extraction sockets of the secondary incisors in the maxilla. The model allows a split-mouth comparative analysis. The implants’ osseointegration was assessed clinically, radiographically using micro-computed tomography (µ-CT), and histologically. A randomised, controlled split-mouth design was conducted in 6 rabbits. A total of twelve implants were inserted. In each rabbit, two implants; one experimental implant on one side, and one control implant on the other side were applied. Screw-shaped implants were used with a length of 8 mm and a diameter of 2 mm. Results All the rabbits tolerated the surgical procedure well. The osseointegration was confirmed clinically, histologically and radiographically. Quantitative assessment of bone volume and mineral density was measured in the peri-implant bone tissues. The findings suggest that the new preclinical model is excellent, facilitating a comprehensive evaluation of osseointegration of dental implants in translational research pertaining to the human application. Conclusion The presented model proved to be safe, reproducible and required basic surgical skills to perform.

Funder

College of Dentistry, King Saud University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3