Influence of the Thermal Treatment to Address a Better Osseointegration of Ti6Al4V Dental Implants: Histological and Histomorphometrical Study in a Rabbit Model

Author:

Scarano Antonio1ORCID,Crocetta Ezio2,Quaranta Alessandro3,Lorusso Felice2ORCID

Affiliation:

1. Department of Medical, Oral and Biotechnological Sciences and CeSi-MeT, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

2. Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

3. Oral Health Centre of Western Australia, University of Western Australia, Perth, WA 6009, Australia

Abstract

Background. Pure titanium continues to be the first choice for dental implants and represents the gold standard for their biocompatibility and physical and mechanical characteristics, while the titanium alloy (Ti6Al4V) has good mechanical properties. The surface structure of the titanium oxide layer formation on the surface influences and improves the bone response around dental implants. Purpose. The purpose of this study is to evaluate the influence of a thermal treatment of Ti6Al4V implant surfaces and the bone healing response in a rabbit model. Methods. Altogether sixteen implants with same design were inserted into the distal femoral metaphysis. A screw (13 mm long, 4 mm in diameter) was inserted in an implant bed. Each rabbit received two implants, one in the left femur and one in the right femur. The samples were histologically and histomorphometrically evaluated at 8 weeks. Results. A statistically significant difference (p = 0.000034) was present histologically in the percentages of bone-implant contact (BIC) between the test group (BIC = 69.25±4.49%.) and control group (BIC = 56.25 ± 4.8%) by one-way analysis of variance (ANOVA). Significance was set at p ≤ 0.05. Conclusions. The outcome of the present study indicates a novel approach to improving bone healing around titanium implants.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3