Author:
Geng Yan,Long Xinyi,Zhang Yuting,Wang Yupeng,You Guoxing,Guo Wenjie,Zhuang Gaoming,Zhang Yuanyuan,Cheng Xiao,Yuan Zhengqiang,Zan Jie
Abstract
Abstract
Background
Parkinson's disease (PD), characterized by the progressive loss of dopaminergic neurons in the substantia nigra and striatum of brain, seriously threatens human health, and is still lack of effective treatment. Dysregulation of N6-methyladenosine (m6A) modification has been implicated in PD pathogenesis. However, how m6A modification regulates dopaminergic neuronal death in PD remains elusive. Mesenchymal stem cell-derived exosomes (MSC-Exo) have been shown to be effective for treating central nervous disorders. We thus propose that the m6A demethylase FTO-targeted siRNAs (si-FTO) may be encapsulated in MSC-Exo (Exo-siFTO) as a synergistic therapy against dopaminergic neuronal death in PD.
Methods
In this study, the effect of m6A demethylase FTO on dopaminergic neuronal death was evaluated both in vivo and in vitro using a MPTP-treated mice model and a MPP + -induced MN9D cellular model, respectively. The mechanism through which FTO influences dopaminergic neuronal death in PD was investigated with qRT-PCR, western blot, immumohistochemical staining, immunofluorescent staining and flow cytometry. The therapeutic roles of MSC-Exo containing si-FTO were examined in PD models in vivo and in vitro.
Results
The total m6A level was significantly decreased and FTO expression was increased in PD models in vivo and in vitro. FTO was found to promote the expression of cellular death-related factor ataxia telangiectasia mutated (ATM) via m6A-dependent stabilization of ATM mRNA in dopaminergic neurons. Knockdown of FTO by si-FTO concomitantly suppressed upregulation of α-Synuclein (α-Syn) and downregulation of tyrosine hydroxylase (TH), and alleviated neuronal death in PD models. Moreover, MSC-Exo were utilized to successfully deliver si-FTO to the striatum of animal brain, resulting in the significant suppression of α-Syn expression and dopaminergic neuronal death, and recovery of TH expression in the brain of PD mice.
Conclusions
MSC-Exo delivery of si-FTO synergistically alleviates dopaminergic neuronal death in PD via m6A-dependent regulation of ATM mRNA.
Funder
Guangzhou Basic and Applied Basic Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献