N6-methyladenosine-modified ALDH9A1 modulates lipid accumulation and tumor progression in clear cell renal cell carcinoma through the NPM1/IQGAP2/AKT signaling pathway

Author:

Tan DiaoyiORCID,Miao Daojia,Zhao Chuanyi,Shi Jian,Lv Qingyang,Lu Feiyi,Ruan HailongORCID,Xiong ZhiyongORCID,Zhang XiaopingORCID

Abstract

AbstractAldehyde dehydrogenases superfamily (ALDHs), which are ubiquitously present in various organisms with diverse subcellular localizations, play a crucial role in regulating malignant tumor progression; Nevertheless, their involvement in clear cell renal cell carcinoma (ccRCC) has not been elucidated. In this study, we performed comprehensive bioinformatics analyses on the 19 ALDHs genes, and identified ALDH9A1 as a key contributor in ccRCC. Expression patterns and clinical relevance of ALDH9A1 were determined using bioinformatics analyses, real-time PCR, western blotting, and immunohistochemistry. To explore the underlying mechanism behind the tumor suppressor role of ALDH9A1, RNA sequencing, methylated RNA immunoprecipitation, luciferase reporter assay, mass spectroscopy, immunoprecipitation, mutational studies and immunofluorescence were employed. The impact of ALDH9A1 in ccRCC progression and metabolic programming was assessed through both in vitro and in vivo. Here, this study revealed ALDH9A1 as a tumor suppressor gene in ccRCC. The fat mass and obesity associated protein (FTO) was identified as a demethylase for ALDH9A1 mRNA, resulting in its reduced stability and expression levels in ccRCC. Functional experiments demonstrated that the deficiency of ALDH9A1 in ccRCC promoted tumor proliferation, invasion, migration and lipid accumulation. Mechanistic insights illustrated that the diminished levels of ALDH9A1 resulted in the failure to sequester nucleophosmin 1 (NPM1) within cytoplasm, thereby suppressing the transcription of IQ motif containing the GTPase-activating protein 2 (IQGAP2), subsequently activating the AKT-mTOR signaling, ultimately fostering tumor progression and lipid accumulation. In conclusion, the present study highlights the robust prognostic significance of ALDH9A1 and delivers a comprehensive understanding of ALDH9A1-NPM1-IQGAP2-AKT axis in ccRCC. These findings established a solid research foundation for novel therapeutic strategies for ccRCC patients.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer J clinicians. 2021;71:209–49.

2. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol. 2019;75:74–84.

3. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer J clinicians. 2017;67:7–30.

4. Cairns P. Renal cell carcinoma. Cancer Biomark: Sect A Dis markers. 2010;9:461–73.

5. Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future directions. CA: a cancer J clinicians. 2017;67:507–24.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3