Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease

Author:

Chen Shuze,Liu Xiuying,Wang Zhi,Zheng Dekai,Wang Ying,Yan Yiling,Peng Xiaojie,Ye Qiujuan,Chen Ye

Abstract

Abstract Background Celiac disease (CeD) is a primary malabsorption syndrome with no specific therapy, which greatly affects the quality of life. Since the pathogenesis of CeD remains riddled, based on multiple transcriptome profiles, this study aimed to establish an immune interaction network and elucidated new mechanisms involved in the pathogenesis of CeD, providing potentially new evidence for the diagnosis and treatment of CeD. Methods Three microarray and three RNA sequencing datasets of human duodenal tissue with or without CeD were included in Gene Expression Omnibus and respectively merged into derivation and validation cohorts. Differential expression gene and functional enrichment analysis were developed, then pyroptosis enrichment score (PES) model was established to quantify pyroptosis levels. Immune infiltration and co-expression network were constructed based on Xcell database. Protein–protein interaction and weighted gene co-expression network analysis were determined to identify pyroptosis relative hub genes, whose predictive efficiency were tested using a least absolute shrinkage and selection operator (LASSO) regression model. CeD animal and in vitro cell line models were established to verify the occurrence of pyroptosis and molecules expression employing immunofluorescence, western blotting, cell counting kit-8 assay and enzyme-linked immunosorbent assay. Analysis of single-cell RNAseq (scRNAseq) was performed using “Seurat” R package. Results Differentially expressed genes (DEGs) (137) were identified in derivation cohort whose function was mainly enriched in interferon response and suppression of metabolism. Since an enrichment of pyroptosis pathway in CeD was unexpectedly discovered, a PES model with high efficiency was constructed and verified with two external databases, which confirmed that pyroptosis was significantly upregulated in CeD epithelia. γδT cells exhibited high expression of IFN-γ were the most relevant cells associated with pyroptosis and occupied a greater weight in the LASSO predictive model of CeD. An accumulation of GSDMD expressed in epithelia was identified using scRNAseq, while animal model and in vitro experiments confirmed that epithelium cells were induced to become “pre-pyroptotic” status via IFN-γ/IRF1/GSDMD axis. Furthermore, gluten intake triggered pyroptosis via caspase-1/GSDMD/IL-1β pathway. Conclusion Our study demonstrated that pyroptosis was involved in the pathogenesis of CeD, and elucidated the novel role of γδT cells in mediating epithelial cell pyroptosis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3