Detecting prognostic biomarkers of breast cancer by regularized Cox proportional hazards models

Author:

Li Lingyu,Liu Zhi-PingORCID

Abstract

Abstract Background The successful identification of breast cancer (BRCA) prognostic biomarkers is essential for the strategic interference of BRCA patients. Recently, various methods have been proposed for exploring a small prognostic gene set that can distinguish the high-risk group from the low-risk group. Methods Regularized Cox proportional hazards (RCPH) models were proposed to discover prognostic biomarkers of BRCA from gene expression data. Firstly, the maximum connected network with 1142 genes by mapping 956 differentially expressed genes (DEGs) and 677 previously BRCA-related genes into the gene regulatory network (GRN) was constructed. Then, the 72 union genes of the four feature gene sets identified by Lasso-RCPH, Enet-RCPH, $$L_{0}$$ L 0 -RCPH and SCAD-RCPH models were recognized as the robust prognostic biomarkers. These biomarkers were validated by literature checks, BRCA-specific GRN and functional enrichment analysis. Finally, an index of prognostic risk score (PRS) for BRCA was established based on univariate and multivariate Cox regression analysis. Survival analysis was performed to investigate the PRS on 1080 BRCA patients from the internal validation. Particularly, the nomogram was constructed to express the relationship between PRS and other clinical information on the discovery dataset. The PRS was also verified on 1848 BRCA patients of ten external validation datasets or collected cohorts. Results The nomogram highlighted that the importance of PRS in guiding significance for the prognosis of BRCA patients. In addition, the PRS of 301 normal samples and 306 tumor samples from five independent datasets showed that it is significantly higher in tumors than in normal tissues ($$P<0.05$$ P < 0.05 ). The protein expression profiles of the three genes, i.e., ADRB1, SAV1 and TSPAN14, involved in the PRS model demonstrated that the latter two genes are more strongly stained in tumor specimens. More importantly, external validation illustrated that the high-risk group has worse survival than the low-risk group ($$P<0.05$$ P < 0.05 ) in both internal and external validations. Conclusions The proposed pipelines of detecting and validating prognostic biomarker genes for BRCA are effective and efficient. Moreover, the proposed PRS is very promising as an important indicator for judging the prognosis of BRCA patients.

Funder

National Key Scientific Instrument and Equipment Development Projects of China

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference89 articles.

1. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.

2. Harbeck N. Breast cancer is a systemic disease optimally treated by a multidisciplinary team. Nat Rev Dis Primers. 2020;6(1):1–2.

3. Le TT, Adler FR. Is mammography screening beneficial: an individual-based stochastic model for breast cancer incidence and mortality. PLoS Comput Biol. 2020;16(7):1–16.

4. Sun H, Lin W, Feng R, Li H. Network-regularized high-dimensional Cox regression for analysis of genomic data. Stat Sinica. 2014;24(3):1433–59.

5. Liu C, Liang Y, Luan XZ, Leung KS, Chan TM, Xu ZB, et al. The $$L_{1/2}$$ regularization method for variable selection in the Cox model. Appl Soft Comput. 2014;14:498–503.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3