A transformer model for cause-specific hazard prediction

Author:

Oliver Matthieu,Allou Nicolas,Devineau Marjolaine,Allyn Jèrôme,Ferdynus Cyril

Abstract

Abstract Backgroud Modelling discrete-time cause-specific hazards in the presence of competing events and non-proportional hazards is a challenging task in many domains. Survival analysis in longitudinal cohorts often requires such models; notably when the data is gathered at discrete points in time and the predicted events display complex dynamics. Current models often rely on strong assumptions of proportional hazards, that is rarely verified in practice; or do not handle sequential data in a meaningful way. This study proposes a Transformer architecture for the prediction of cause-specific hazards in discrete-time competing risks. Contrary to Multilayer perceptrons that were already used for this task (DeepHit), the Transformer architecture is especially suited for handling complex relationships in sequential data, having displayed state-of-the-art performance in numerous tasks with few underlying assumptions on the task at hand. Results Using synthetic datasets of 2000–50,000 patients, we showed that our Transformer model surpassed the CoxPH, PyDTS, and DeepHit models for the prediction of cause-specific hazard, especially when the proportional assumption did not hold. The error along simulated time outlined the ability of our model to anticipate the evolution of cause-specific hazards at later time steps where few events are observed. It was also superior to current models for prediction of dementia and other psychiatric conditions in the English longitudinal study of ageing cohort using the integrated brier score and the time-dependent concordance index. We also displayed the explainability of our model’s prediction using the integrated gradients method. Conclusions Our model provided state-of-the-art prediction of cause-specific hazards, without adopting prior parametric assumptions on the hazard rates. It outperformed other models in non-proportional hazards settings for both the synthetic dataset and the longitudinal cohort study. We also observed that basic models such as CoxPH were more suited to extremely simple settings than deep learning models. Our model is therefore especially suited for survival analysis on longitudinal cohorts with complex dynamics of the covariate-to-outcome relationship, which are common in clinical practice. The integrated gradients provided the importance scores of input variables, which indicated variables guiding the model in its prediction. This model is ready to be utilized for time-to-event prediction in longitudinal cohorts.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Routh P, Roy A, Meyer J. Estimating customer churn under competing risks. J Oper Res Soc. 2020;72(1–18):08.

2. Wycinka E. Competing risk models of default in the presence of early repayments. Econometrics. 2019;23:06.

3. Cope S, Jansen J. Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making. BMC Med Res Methodol. 2013;13(147):12.

4. Lee M, Feuer EJ, Fine JP. On the analysis of discrete time competing risks data. Biometrics. 2018;74(4):1468–81.

5. Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 1972;34(2):187–202.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3